首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and function of the receptor-like protein kinases of higher plants   总被引:25,自引:0,他引:25  
Cell surface receptors located in the plasma membrane have a prominent role in the initiation of cellular signalling. Recent evidence strongly suggests that plant cells carry cell surface receptors with intrinsic protein kinase activity. The plant receptor-like protein kinases (RLKs) are structurally related to the polypeptide growth factor receptors of animals which consist of a large extracytoplasmic domain, a single membrane spanning segment and a cytoplasmic domain of the protein kinase gene family. Most of the animal growth factor receptor protein kinases are tyrosine kinases; however, the plant RLKs all appear to be serine/threonine protein kinases. Based on structural similarities in their extracellular domains the RLKs fall into three categories: the S-domain class, related to the self-incompatibility locus glycoproteins of Brassica; the leucine-rich repeat class, containing a tandemly repeated motif that has been found in numerous proteins from a variety of eukaryotes; and a third class that has epidermal growth factor-like repeats. Distinct members of these putative receptors have been found in both monocytyledonous plants such as maize and in members of the dicotyledonous Brassicaceae. The diversity among plant RLKs, reflected in their structural and functional properties, has opened up a broad new area of investigation into cellular signalling in plants with far-reaching implications for the mechanisms by which plant cells perceive and respond to extracellular signals.  相似文献   

2.
Plant genomes encode a variety of protein kinases, and while some are functional homologues of animal and fungal kinases, others have a novel structure. This review focuses on three groups of unusual membrane-associated plant protein kinases: receptor-like protein kinases (RLKs), calcium-dependent protein kinases (CDPKs), and histidine protein kinases. Animal RLKs have a putative extracellular domain, a single transmembrane domain, and a protein kinase domain. In plants, all of the RLKs identified thus far have serine/threonine signature sequences, rather than the tyrosine-specific signature sequences common to animals. Recent genetic experiments reveal that some of these plant kinases function in development and pathogen resistance. The CDPKs of plants and protozoans are composed of a single polypeptide with a protein kinase domain fused to a C-terminal calmodulin-like domain containing four calcium-binding EF hands. No functional plant homologues of protein kinase C or Ca2+/calmodulin-dependent protein kinase have been identified, and no animal or fungal CDPK homologues have been identified. Recently, histidine kinases have been shown to participate in signaling pathways in plants and fungi. ETR1, an Arabidopsis histidine kinase homologue with three transmembrane domains, functions as a receptor for the plant hormone ethylene. G-protein-coupled receptors, which often serve as hormone receptors in animal systems, have not yet been identified in plants. Received: 18 August 1997/Revised: 23 December 1997  相似文献   

3.
The structure of plant receptor-like kinases (RLKs) is similar to that of animal receptor tyrosine kinases (RTKs), and consists of an extracellular domain, a transmembrane span, and a cytoplasmic domain containing the conserved kinase domain. The mechanism by which animal RTKs, and probably plant RLKs, signal includes the dimerization of the receptor, their intermolecular phosphorylation, and the phosphorylation of downstream signalling proteins. However, atypical RTKs with a kinase-dead domain that signal through phosphorylation-independent mechanisms have also been described in animals. In the last few years, some atypical RLKs have also been reported in plants. Here these examples and their possible signalling mechanisms are reviewed. Plant genomes contain a much larger number of genes coding for receptor kinases than other organisms. The prevalence of atypical RLKs in plants is analysed here. A sequence analysis of the Arabidopsis kinome revealed that 13% of the kinase genes do not retain some of the residues that are considered as invariant within kinase catalytic domains, and are thus putatively kinase-defective. This percentage rises to close to 20% when analysing RLKs, suggesting that phosphorylation-independent mechanisms mediated by atypical RLKs are particularly important for signal transduction in plants.  相似文献   

4.
Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.  相似文献   

5.
Functional analysis of receptor-like kinases in monocots and dicots   总被引:2,自引:0,他引:2  
Receptor-like kinases (RLKs) are signaling proteins that feature an extracellular domain connected via a transmembrane domain to a cytoplasmic kinase. This architecture indicates that RLKs perceive external signals, transducing them into the cell. In plants, RLKs were first implicated in the regulation of development, in pathogen responses, and in recognition events. RLKs comprise a major gene family in plants, with more than 600 encoded in the Arabidopsis genome and more than 1100 found in rice genomes. The greater number of RLKs in rice is mostly attributable to expansions in the clades that are involved in pathogen responses. Recent functional studies in both monocots and dicots continue to identify individual RLKs that have similar developmental and abiotic stress roles. Analysis of closely related RLKs reveals that family members might have overlapping roles but can also possess distinct functions.  相似文献   

6.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

7.
Sucrose nonfermenting-1 (Snf1)-related protein kinase-1 (SnRK1) of plants is a global regulator of carbon metabolism through the modulation of enzyme activity and gene expression. It is structurally and functionally related to the yeast protein kinase, Snf1, and to mammalian AMP-activated protein kinase. Two DNA sequences from Arabidopsis thaliana, previously known only by their data base accession numbers of NM_ 125448.3 (protein ID NP_200863) and NM_114393.3 (protein ID NP_566876) each functionally complemented a Saccharomyces cerevisiae elm1 sak1 tos3 triple mutant. This indicates that the Arabidopsis proteins are able to substitute for one of the missing yeast upstream kinases, which are required for activity of Snf1. Both plant proteins were shown to phosphorylate a peptide with the amino acid sequence of the phosphorylation site in the T-loop of SnRK1 and by inference SnRK1 in Arabidopsis. The proteins encoded by NM_125448.3 and NM_114393.3 have been named AtSnAK1 and AtSnAK2 (Arabidopsis thaliana SnRK1-activating kinase), respectively. We believe this is the first time that upstream activators of SnRK1 have been described in any plant species.  相似文献   

8.
Mitogen-activated protein kinase cascades in plants: a new nomenclature   总被引:9,自引:0,他引:9  
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes, including yeasts, animals and plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. In plants, MAPK cascades are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. Completion of the Arabidopsis genome-sequencing project has revealed the existence of 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase kinases. Here, we propose a simplified nomenclature for Arabidopsis MAPKs and MAPK kinases that might also serve as a basis for standard annotation of these gene families in all plants.  相似文献   

9.
Plant receptor-like kinases (RLKs) are transmembrane proteins with putative N-terminal extracellular ligand-binding domains and C-terminal intracellular protein kinase domains. RLKs have been implicated in multiple physiological programs including plant development and immunity to microbial infection. Arabidopsis thaliana gene expression patterns support an important role of this class of proteins in biotic stress adaptation. Here, we provide a comprehensive survey of plant immunity-related RLK gene expression. We further document the role of the Arabidopsis Brassinosteroid Insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) in seemingly unrelated biological processes, such as plant development and immunity, and propose a role of this protein as an adaptor molecule that is required for proper functionality of numerous RLKs. This view is supported by the identification of an additional RLK, PEPR1, and its closest homolog, PEPR2 as BAK1-interacting RLKs.  相似文献   

10.
植物受体蛋白激酶的研究进展   总被引:1,自引:0,他引:1  
张蕾  吕应堂 《生命科学》2002,14(2):95-98,94
在植物中存在一种由胞外结构域、跨膜区域和胞内的蛋白激酶区域三部分组成的跨膜受体蛋白激酶(receptor-lik protein kinases,RLKs)。该蛋白一方面作为胞外特异配基的受体,同时本身又是一种蛋白激酶。研究表明,植物细胞中的RLKs可能参与了植物细胞抗逆反应,植物形态发生、自交不亲和等生理生化反应,作者将从RLKs的结构、种类,基因表达方式及其植物生长和发育过程中的作用做简要介绍。  相似文献   

11.
12.
Phosphorylation by protein tyrosine kinases is crucial to the control of growth and development of multicellular eukaryotes, including humans, and it also seems to play an important role in multicellular prokaryotes. A plant tyrosine-specific kinase has not been identified yet; hence, plants have been suggested to share with unicellular eukaryote yeast a tyrosine phosphorylation system where a limited number of stress proteins are tyrosyl-phosphorylated only by a few dual-specificity (serine/threonine and tyrosine) kinases. However, preliminary evidence obtained so far suggests that tyrosine phosphorylation in plants depends on the developmental conditions. Since sequencing of the genome of the model flowering plant Arabidopsis thaliana has been recently completed, we have performed a bioinformatic screening of the whole Arabidopsis proteome to identify a model complement of bona fide protein tyrosine kinases. In silico analyses suggest that < 4% of Arabidopsis kinases are tyrosine-specific kinases, whose gene expression has been assessed by a preliminary polymerase chain reaction screening of an Arabidopsis cDNA library. Finally, immunological evidence confirms that the number of Arabidopsis proteins specifically phosphorylated on tyrosine residues is much higher than in yeast.  相似文献   

13.
Meristem maintenance and differentiation is regulated by intercellular communication through receptor-like kinases (RLKs) in plants, but the underlying molecular mechanisms of RLK signaling remain largely unknown. A cytoplasmic interactor for inflorescence and root apices receptor-like kinase (IRK), which is a typical meristematic RLK with leucine-rich repeats in Arabidopsis, was identified using a yeast two-hybrid assay and named IRK-interacting protein (IRKI). IRKI is a novel but highly conserved protein found in higher plants. The interaction between IRK and IRKI was confirmed by an in vitro pull-down assay and supported by their simultaneous expression in actively dividing cells in meristems. In the root tip, IRKI expression and localization visualized by green fluorescence protein (GFP) were observed in the quiescent center, initial cells, and immature stele cells. IRKI expression was expanded by exogenous auxin treatment and repressed by inhibitor treatment of polar auxin transport.  相似文献   

14.
The RLK/Pelle class of proteins kinases is composed of over 600 members in Arabidopsis. Many of the proteins in this family are receptor-like kinases (RLK), while others have lost their extracellular domains and are found as cytoplasmic kinases. Proteins in this family that are RLKs have a variety of extracellular domains that drive function in a large number of processes, from cell wall interactions to disease resistance to developmental control. This review will briefly cover the major subclasses of RLK/Pelle proteins and their roles. In addition, two specific groups on RLKs will be discussed in detail, relating recent findings in Arabidopsis and how well these conclusions have been able to be translated to agronomically important species. Finally, some details on kinase activity and signal transduction will be addressed, along with the mystery of RLK/Pelle members lacking kinase enzymatic activity.  相似文献   

15.
The Arabidopsis CDPK-SnRK superfamily of protein kinases   总被引:25,自引:0,他引:25  
The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants.  相似文献   

16.
植物受体蛋白激酶通过与胞外信号结合感知和接收外部信号传递,在植物各个生理过程及生物代谢中发挥着重大的作用。其中M/MLD类受体蛋白激酶是一类植物特有的具有Malectin-like结构域的受体蛋白激酶。研究表明,M/MLD-RLKs亚家族参与植物发育过程及生物/非生物胁迫调控。该研究对近年来国内外有关植物M/MLD-RLKs的发现、结构特点以及生物学功能等方面的研究进展进行综述,并重点阐述其在调控植物根系、叶片、花发育及响应多种胁迫过程中的作用,为深入研究M/MLD-RLKs在植物生长发育过程中的生理功能提供参考。  相似文献   

17.
Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants.  相似文献   

18.
Sphingolipid long-chain base (LCB) kinase catalyses the phosphorylation of sphingolipid LCB to form LCB 1-phosphate. Based on sequence identity to a murine sphingosine kinase (murine SPHK1a), we isolated and characterized a LCB kinase-like cDNA in Arabidopsis thaliana. The deduced amino acid sequence of the homologous cDNA shows several regions that are highly conserved in LCB kinases from mouse, yeast, human and Caenorhabditis elegans. These regions are not similar to those of other known kinase families. For a functional identification, the homologous cDNA from A. thaliana was expressed in Escherichia coli, and LCB kinase activity was measured. The recombinant AtLcbk1 protein was found to utilize ATP and sphinganine. These results indicate the first identification of a gene coding for a LCB kinase in plants.  相似文献   

19.
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.  相似文献   

20.
Receptor-like protein kinases (RLKs) in plants play major roles in cellular processes and stress responses. Three soybean (Glycine max) orthologs of Arabidopsis thaliana RLK were isolated and designated GmRLK1, GmRLK2, and GmRLK3. GmRLK1, GmRLK2, and GmRLK3 are similar in sequence, with GmRLK2 and GmRLK3 being nearly identical. The deduced amino acid sequences of GmRLK1, GmRLK2, and GmRLK3 possess characteristics of a transmembrane leucine-rich repeat RLK, AtCLV1. DNA fingerprinting and PCR analyses of a bacterial artificial chromosome library identified five GmRLK contigs (I-V): three for GmRLK1 (I, II, and V), one for GmRLK2 (III), and one for both GmRLK2 and GmRLK3 (IV). Phylogenetic analysis of the soybean RLKs together with other plant RLKs indicates that soybean and A. thaliana CLV1s generate a CLV1 branch, while soybean, A. thaliana, and rice RLKs generate an RLK branch. Thus, the AtCLV1 orthologs may have evolved later than the other pathogen-, environmental stress-, plant hormone-, and development-associated RLKs. A common ancestral GmRLK gene may have duplicated to give rise to GmRLK1, GmRLK2, and GmRLK3, or GmRLK2 and GmRLK3 may have resulted from a recent duplication event(s). Several amino acid replacements in the kinase domain of GmRLK1 compared with those of GmRLK2 and GmRLK3 may reflect evolutionary divergence of individual family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号