首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6-phospho group of fructose 6-phosphate/fructose 2,6-bisphosphate; 2) the fructose 6-phosphate binding site is responsible for substrate inhibition; 3) Inorganic phosphate activates fructose-2,6-bisphosphatase by competing with fructose 6-phosphate for the same site; and 4) Lys-356 is not involved in 6-phosphofructo-2-kinase substrate/product binding or catalysis.  相似文献   

2.
The effects of tolbutamide on the activities of fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase were examined using rat hepatocytes. Tolbutamide stimulated fructose-6-phosphate,2-kinase activity and inhibited fructose-2,6-bisphosphatase activity, resulting in an increase of fructose-2,6-bisphosphate level. Changes in the activities of the enzyme by tolbutamide were due to variation in the Km value, but not dependent on alteration of Vmax. Glucagon inhibition of fructose-2,6-bisphosphate formation resulting from an inactivation of fructose-6-phosphate,2-kinase and an activation of fructose-2,6-bisphosphatase was released by tolbutamide. Tolbutamide stimulation of fructose-2,6-bisphosphate formation through regulation of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase may produce enhancement of glycolysis and inhibition of gluconeogenesis in the liver.  相似文献   

3.
4.
Fructose-2,6-bisphosphatase from rat liver   总被引:16,自引:0,他引:16  
An enzyme that catalyzes the stoichiometric conversion of fructose 2,6-bisphosphate into fructose 6-phosphate and inorganic phosphate has been purified from rat liver. This fructose 2,6-bisphosphatase copurified with phosphofructokinase 2 (ATP: D-fructose 6-phosphate 2-phosphotransferase) in the several separation procedures used. The enzyme was active in the absence of Mg2+ and was stimulated by triphosphonucleotides in the presence of Mg2+ and also by glycerol 3-phosphate, glycerol 2-phosphate and dihydroxyacetone phosphate. It was strongly inhibited by fructose 6-phosphate at physiological concentrations and this inhibition was partially relieved by glycerol phosphate and dihydroxyacetone phosphate. The activity of fructose 2,6-bisphosphatase was increased severalfold upon incubation in the presence of cyclic-AMP-dependent protein kinase and cyclic AMP. The activation resulted from an increase in V (rate at infinite concentration of substrate) and from a greater sensitivity to the stimulatory action of ATP and of glycerol phosphate at neutral pH. The activity of fructose 2,6-bisphosphatase could also be measured in crude liver preparations and in extracts of hepatocytes. It was then increased severalfold by treatment of the cells with glucagon, when measured in the presence of triphosphonucleotides.  相似文献   

5.
The complete amino acid sequence of 6-phospho-fructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was determined by direct analysis of the S-carboxamidomethyl protein. A complete set of nonoverlapping peptides was produced by cleavage with a combination of cyanogen bromide and specific proteolytic enzymes. The active enzyme is a dimer of two identical polypeptide chains composed of 470 amino acids each. The NH2-terminal amino acid residue of the polypeptide chain was shown to be N-acetylserine by fast atom bombardment mass spectrometry of the purified N-terminal tetradecapeptide isolated after cleavage of the intact S-carboxamidomethylated protein with lysyl endoproteinase (Achromobacter protease I). Alignment of the set of unique peptides was accomplished by the analysis of selected overlapping peptides generated by proteolytic cleavage of the intact protein and the larger purified cyanogen bromide peptides with trypsin, Staphylococcus aureus V8 protease, and lysyl endoproteinase. Four nonoverlapping peptides were aligned by comparison with the amino acid sequence predicted from a partial cDNA clone encoding amino acid positions 166-470 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Colosia, A.D., Lively, M., El-Maghrabi, M. R., and Pilkis, S. J. (1987) Biochem. Biophys. Res. Commun. 143, 1092-1098). The nucleotide sequence of the cDNA corroborated the peptide sequence determined by direct methods. A search of the Protein Identification Resource protein sequence database revealed that the overall amino acid sequence appears to be unique since no obviously homologous sequences were identified. However, a 100-residue segment of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (residues 250-349), including the active site histidine residue of the bisphosphatase domain, was found to be homologous to the active site regions of yeast phosphoglycerate mutase and human bisphosphoglycerate mutase.  相似文献   

6.
7.
Regulation of rat liver fructose 2,6-bisphosphatase   总被引:17,自引:0,他引:17  
An enzyme activity that catalyzes the hydrolysis of phosphate from the C-2 position of fructose 2,6-bisphosphate has been detected in rat liver cytoplasm. The S0.5 for fructose 2,6-bisphosphate was about 15 microM and the enzyme was inhibited by fructose 6-phosphate (Ki 40 microM) and activated by Pi (KA 1 mM). Fructose 2,6-bisphosphatase activity was purified to homogeneity by specific elution from phosphocellulose with fructose by specific elution from phosphocellulose with fructose 6-phosphate and had an apparent molecular weight of about 100,000, 6-phosphofructo 2-kinase activity copurified with fructose 2,6-bisphosphatase activity at each step of the purification scheme. Incubation of the purified protein with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in the incorporation of 1 mol of 32P/mol of enzyme subunit (Mr = 50,000). Concomitant with this phosphorylation was an activation of the fructose 2,6-bisphosphatase and an inhibition of the 6-phosphofructo 2-kinase activity. Glucagon addition to isolated hepatocytes also resulted in an inhibition of 6-phosphofructo 2-kinase and activation of fructose 2,6-bisphosphatase measured in cell extracts, suggesting that the hormone regulates the level of fructose 2,6-bisphosphate by affecting both synthesis and degradation of the compound. These findings suggest that this enzyme has both phosphohydrolase and phosphotransferase activities i.e. that it is bifunctional, and that both activities can be regulated by cAMP-dependent phosphorylation.  相似文献   

8.
The two activities of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by o-phthalaldehyde. Absorbance and fluorescence spectra of the modified enzyme were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme subunit). The inactivation of 6-phosphofructo-2-kinase by o-phthalaldehyde was faster than the inactivation of fructose-2,6-bisphosphatase, which was concomitant with the increase in fluorescence. The substrates of 6-phosphofructo-2-kinase did not protect the kinase against inactivation, whereas fructose-2,6-bisphosphate fully protected against o-phthalaldehyde-induced inactivation of the bisphosphatase. Addition of dithiothreitol prevented both the increase in fluorescence and the inactivation of fructose-2,6-bisphosphatase, but not that of 6-phosphofructo-2-kinase. It is proposed that o-phthalaldehyde forms two different inhibitory adducts: a non-fluorescent adduct in the kinase domain and a fluorescent isoindole derivative in the bisphosphatase domain. A lysine and a cysteine residue could be involved in fructose-2,6-bisphosphate binding in the bisphosphatase domain of the protein.  相似文献   

9.
Lysine 274 is conserved in all known fructose-1,6-bisphosphatase sequences. It has been implicated in substrate binding and/or catalysis on the basis of reactivity with pyridoxal phosphate as well as by x-ray crystallographic analysis. Lys274 of rat liver fructose-1,6-bisphosphatase was mutated to alanine by the polymerase chain reaction, and the T7-RNA polymerase-transcribed construct containing the mutant sequence was expressed in Escherichia coli. The mutant and wild-type forms of the enzyme were purified to homogeneity, and their specific activity, substrate dependence, and inhibition by fructose 2,6-bisphosphate and AMP were compared. While the mutant exhibited no change in maximal velocity, its Km for fructose 1,6-bisphosphate was 20-fold higher than that of the wild-type, and its Ki for fructose 2,6-bisphosphate was increased 1000-fold. Consistent with the unaltered maximal velocity, there were no apparent difference between the secondary structure of the wild-type and mutant enzyme forms, as measured by circular dichroism and ultraviolet difference spectroscopy. The Ki for the allosteric inhibitor AMP was only slightly increased, indicating that Lys274 is not directly involved in AMP inhibition. Fructose 2,6-bisphosphate potentiated AMP inhibition of both forms, but 500-fold higher concentrations of fructose 2,6-bisphosphate were needed to reduce the Ki for AMP for the mutant compared to the wild-type. However, potentiation of AMP inhibition of the Lys274----Ala mutant was evident at fructose 2,6-bisphosphate concentrations (approximately 100 microM) well below those that inhibited the enzyme, which suggests that fructose 2,6-bisphosphate interacts either with the AMP site directly or with other residues involved in the active site-AMP synergy. The results also demonstrate that although Lys274 is an important binding site determinant for sugar bisphosphates, it plays a more significant role in binding fructose 2,6-bisphosphate than fructose 1,6-bisphosphate, probably because it binds the 2-phospho group of the former while other residues bind the 1-phospho group of the substrate. It is concluded that the enzyme utilizes Lys274 to discriminate between its substrate and fructose 2,6-bisphosphate.  相似文献   

10.
The cooperation of phosphofructokinase-2 and fructose-2,6-bisphosphatase is investigated. Experimentally derived rate laws of the kinase and bisphosphatase activities introduced into the respective differential equations permitted to describe the time evolution of fructose-2,6-bisphosphate to quasi-stationary levels. The two enzyme activities were found to exert strong temperature dependence. The quasi-stationary levels of fructose-2,6-bisphosphate, however, are independent on temperature.  相似文献   

11.
Rat liver fructose-2,6-bisphosphatase, which catalyzes its reaction via a phosphoenzyme intermediate, is evolutionarily related to the phosphoglycerate mutase enzyme family (Bazan, F., Fletterick, R., and Pilkis, S.J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). Arg-7 and Arg-59 of the yeast phosphoglycerate mutase have been postulated to be substrate-binding residues based on the x-ray crystal structure. The corresponding residues in rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, Arg-257 and Arg-307, were mutated to alanine. The Arg257Ala and Arg307Ala mutants and the wild-type enzyme were expressed in Escherichia coli and then purified to homogeneity. Both mutant enzymes had identical far and near UV circular dichroism spectra and 6-phosphofructo-2-kinase activities when compared with the wild-type enzyme. However, the Arg257Ala and Arg307Ala mutants had altered steady state fructose-2,6-bisphosphatase kinetic properties; the Km values for fructose-2,6-bisphosphate of the Arg257Ala and Arg307Ala mutants were increased by 12,500- and 760-fold, whereas the Ki values for inorganic phosphate were increased 7.4- and 147-fold, respectively, as compared with the wild-type values. However, the Ki values for the other product, fructose-6-phosphate, were unchanged for the mutant enzymes. Although both mutants exhibited parallel changes in kinetic parameters that reflect substrate/product binding, they had opposing effects on their respective maximal velocities; the maximal velocity of Arg257Ala was 11-fold higher, whereas that for Arg307Ala was 700-fold lower, than that of the wild-type enzyme. Pre-steady state kinetic studies demonstrated that the rate of phosphoenzyme formation for Arg307Ala was at least 4000-fold lower than that of the wild-type enzyme, whereas the rate for Arg257Ala was similar to the wild-type enzyme. Furthermore, consistent with the Vmax changes, the rate constant for phosphoenzyme breakdown for Arg257Ala was increased 9-fold, whereas that for Arg307Ala was decreased by a factor of 500-fold, as compared with the wild-type value. The results indicate that both Arg-257 and Arg-307 interact with the reactive C-2 phospho group of fructose 2,6-bisphosphate and that Arg-307 stabilizes this phospho group in the transition state during phosphoenzyme breakdown, whereas Arg-257 stabilizes the phospho group of the ground state phosphoenzyme intermediate.  相似文献   

12.
There are at least 3 isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, a bifunctional enzyme which catalyzes the synthesis and degradation of fructose 2,6-bisphosphate. A 22-kb rat gene that encodes the heart isozyme has been identified and compared with the 55-kb rat gene encoding the liver and muscle isozymes which had been described earlier. Although these 2 genes include 12 successive similar exons, they contain dissimilar exons at both ends, consistent with the occurrence of different regulatory domains at the N- and C-termini in the 3 isozymes.  相似文献   

13.
Zhu Z  Ling S  Yang QH  Li L 《Biological chemistry》2000,381(12):1195-1202
The fructose-2,6-bisphosphatase domain of the bifunctional chicken liver enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase shares approximately 95% amino acid sequence homology with that of the rat enzyme. However, these two enzymes are significantly different in their phosphatase activities. In this report, we show that the COOH-terminal 25 amino acids of the two enzymes are responsible for the different enzymatic activities. Although these 25 amino acids are not required for the phosphatase activity, their removal diminishes the differences in the activities between the two enzymes. In addition, two chimeric molecules (one consisting of the catalytic core of the chicken bisphosphatase domain and the rat COOH-terminal 25 amino acids, and the other consisting of most of the intact chicken enzyme and the rat COOH-terminal 25 amino acids) showed the same kinetic properties as the rat enzyme. Furthermore, substitution of the residues Pro456Pro457Ala458 of the chicken enzyme with GluAlaGlu, the corresponding sequence in the rat liver enzyme, yields a chicken enzyme that behaves like the rat enzyme. These results demonstrate that the different bisphosphatase activities of the chicken and rat liver bifunctional enzymes can be attributed to the differences in their COOH-terminal amino acid sequences, particularly the three residues.  相似文献   

14.
We re-examined the kinetics of the bisphosphatase reaction of rat hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase after depleting the enzyme of bound fructose 6-phosphate and found a hyperbolic dependence on fructose 2,6-bisphosphate at concentrations below 100 nM. The Michaelis constant was 4 nM, the Vmax was about 12 nmol X mg-1 X min-1 at 22 degrees C but the substrate inhibited at concentrations above 100 nM. Both phosphate and alpha-glycerol phosphate strongly inhibited phosphoenzyme formation and hydrolytic rate below 100 nM, but relieved the inhibition by substrate at higher concentrations probably by antagonizing substrate binding. A number of observations support the proposition that the phosphoenzyme is a necessary participant in catalysis. 1) The amount of phosphoenzyme measured during steady-state hydrolysis as a function of substrate concentration correlated with the velocity profile. 2) Rapid mixing experiments demonstrated that over a broad range of substrate concentrations phosphoenzyme formation was faster than the net rate of hydrolysis. 3) Both phosphate and alpha-glycerol phosphate inhibited the rate of phosphoenzyme formation and, at low substrate concentrations, reduced the steady-state phosphoenzyme levels. The latter correlated with inhibition of substrate hydrolysis. 4) Both phosphate and alpha-glycerol phosphate stimulate the rate of phosphoenzyme breakdown, consistent with their stimulation of substrate hydrolysis at high substrate concentrations. 5) The fractional rate of phosphoenzyme breakdown, which was pH and substrate dependent, multiplied by the amount of phosphoenzyme obtained in the steady state at that pH and substrate concentration approximated the observed rate of hydrolysis. We conclude that the phosphoenzyme is a reaction intermediate in the hepatic fructose-2,6-bisphosphatase reaction.  相似文献   

15.
G Paravicini  M Kretschmer 《Biochemistry》1992,31(31):7126-7133
Sequencing of an open reading frame 450 bp downstream from the yeast VPS35 gene revealed a putative peptide of 452 amino acids and 52.7 kDa. The predicted amino acid sequence has 45% identity with the 55-kDa subunit of the 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (EC 2.7.1.105/EC 3.1.3.46) from rat liver and 42% identity with 480 amino acids in the center of the recently reported 93.5-kDa subunit of yeast 6-phosphofructo-2-kinase (EC 2.7.1.105). The product of the new yeast gene is similar to the entire sequence of the bifunctional rat liver enzyme and, unlike yeast 6-phosphofructo-2-kinase, has the histidine residue essential for fructose-2,6-bisphosphatase activity. Extracts from a chromosomal null mutant strain, fbp26::HIS3, incubated in the presence of [2-32P]fructose 2,6-P2, lacked in autoradiograms the characteristic 56-kDa labeled band observed in wild-type. The same band was intensified 3-fold over wild-type level with the FBP26 gene introduced on multicopy in the fbp26::HIS3 background. A similar increase was found for fructose-2,6-bisphosphatase activity in the same extracts. The FBP26 gene did not cause detectable increase in 6-phosphofructo-2-kinase activity when introduced on multicopy in a pfk26::LEU2 mutant, indicating that its gene product is predominantly a fructose-2,6-bisphosphatase. Growth on glucose, fructose, galactose, pyruvate, and glycerol/lactate was not impaired in strains carrying the fbp26::HIS3 allele.  相似文献   

16.
The effects of fasting/refeeding and untreated or insulin-treated diabetes on the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and its mRNA in rat liver were determined. Both enzymatic activities fell to 20% of control values with fasting or streptozotocin-induced diabetes and were coordinately restored to normal within 48 h of refeeding or 24 h of insulin administration. These alterations in enzymatic activities were always mirrored by corresponding changes in amount of enzyme as determined by phosphoenzyme formation and immunoblotting. In contrast, mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase did not decrease during starvation or in diabetes, but there was a 3-6-fold increase upon refeeding a high carbohydrate diet to starved rats or insulin treatment of diabetic rats. The decrease of the enzyme in starved or diabetic rats without associated changes in mRNA levels suggests a decrease in the rate of mRNA translation, an increase in enzyme degradation, or both. The rise in enzyme amount and mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with refeeding and insulin treatment suggests an insulin-dependent stimulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression. Northern blots of RNA from heart, brain, kidney, and skeletal muscle probed with restriction fragments of a full-length cDNA from liver showed that only skeletal muscle contained an RNA species that hybridized to any of the probes. Skeletal muscle mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was 2.0 kilobase pairs but in contrast to the liver message (2.2 kilobase pairs) was not regulated by refeeding.  相似文献   

17.
Lys-356 has been implicated as a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Li, L., Lin, K., Correia, J., and Pilkis, S. J. (1992) J. Biol. Chem. 267, 16669-16675). To ascertain whether the three other basic residues (Arg-352, Arg-358, and Arg-360), which are located in a surface loop (residues 331-362) which contains Lys-356, are important in substrate binding, these arginyl residues were mutated to Ala, and each arginyl mutant was expressed in Escherichia coli and purified to homogeneity. The far UV circular dichroism spectra of the mutants were identical to that of the wild-type enzyme. The kinetic parameters of 6-phosphofructo-2-kinase of the mutants revealed only small changes. However, the Km for fructose 2,6-bisphosphate, Ki for fructose 6-phosphate, and Ka for inorganic phosphate of fructose-2,6-bisphosphatase for Arg352Ala were, respectively, 2,800-, 4,500-, and 1,500-fold higher than those for the wild-type enzyme, whereas there was no change in the maximal velocity or the Ki for inorganic phosphate. The Km for fructose 2,6-bisphosphate and Ki for inorganic phosphate of Arg360Ala were 10- and 12-fold higher, respectively, than those of the wild-type enzyme, whereas the maximal velocity and Ki for fructose 6-phosphate were unchanged. In addition, substrate inhibition was not observed with Arg352Ala and greatly reduced with Arg360Ala. The properties of the Arg358Ala mutant were identical to those of the wild-type enzyme. The results demonstrate that in addition to Lys-356, Arg-352 is another critical residue in fructose-2,6-bisphosphatase for binding the C-6 phospho group of fructose 2,6-bisphosphate and that Arg-360 binds the C-2 phospho group of fructose 2,6-bisphosphate in the phosphoenzyme.fructose 2,6-bisphosphate complex. The results also provide support for Arg-352, Lys-356, and Arg-360 constituting a specificity pocket for fructose-2,6-bisphosphatase.  相似文献   

18.
Sakurai M  Cook PF  Haseman CA  Uyeda K 《Biochemistry》2000,39(51):16238-16243
A bifunctional enzyme, fructose-6-phosphate, 2-kinase:fructose-2, 6-bisphosphatase, catalyzes synthesis and hydrolysis of fructose 2, 6-bisphosphate. The phosphatase reaction occurs in two steps: the formation of a phosphoenzyme intermediate and release of beta-D-fructose 6-phosphate, followed by hydrolysis of the phosphoenzyme. The objective of this study was to determine whether E325 in the Fru 2,6-Pase active site is an acid-base catalyst. The pH-rate profile for k(cat) for the wild-type enzyme exhibits pK values of 5.6 and 9.1. The pH dependence of k(cat) for the E325A mutant enzyme gives an increase in the acidic pK from 5.6 to 6.1. Formate, acetate, propionate, and azide accelerate the rate of hydrolysis of the E325A mutant enzyme, but not of the wild-type enzyme. Azide and formate, the smallest of the weak acids tested, are the most potent activators. The k(cat) vs pH profile of the E325A mutant enzyme in the presence of formate is similar to that of the wild-type enzyme. Taken together, these data are consistent with E325 serving an acid-base role in the phosphatase reaction. The exogenous low MW weak acids act as a replacement general base in the hydrolysis of the phosphoenzyme intermediate, rescuing some of the activity lost upon eliminating the glutamate side chain.  相似文献   

19.
Alkylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with p-mercuribenzoate caused a rapid stimulation of the kinase and an inhibition of the bisphosphatase. At later times, the kinase activity also became inhibited. In contrast, treatment with N-ethylmaleimide abolished kinase activity but had no effect on the bisphosphatase. Selective modification of residues involved in the kinase reaction was also seen with iodoacetamide, which caused a 10-fold stimulation of the kinase Vmax without affecting the bisphosphatase. The stimulatory effect of carboxyamidomethylation was seen when the kinase was assayed in the presence of inorganic phosphate, an allosteric activator of the enzyme. The iodoacetamide-treated enzyme had a 10-20-fold higher Km for fructose 6-phosphate than the native enzyme and the Ki for fructose 2,6-bisphosphate was also increased. However, the adenine-nucleotide site did not seem to be affected since there was no change in the Km for ATP, the Ki for ADP, or the adenine-nucleotide exchange. There was also a direct correlation between the incorporation of [14C]acetamide into the enzyme and activation of the kinase. The residues modified by iodoacetamide were shown to be cysteines by the exclusive appearance of carboxymethylcysteine in protein hydrolysates. Activation was associated with alkylation of 2 cysteines/subunit, of the 12 which could be alkylated after denaturation/reduction. Iodoacetamide-activated kinase was inhibited by ascorbate/Fe3+, which has been shown to modify sulfhydryl groups in the native enzyme, with concomitant loss of kinase activity.  相似文献   

20.
Fructose-6-phosphate,2-kinase:fructose-2,6-bis-phosphatase from rat skeletal muscle has been purified to homogeneity, and its structure and kinetic properties have been determined. The Mr of the native enzyme was 100,000 and the subunit Mr was 54,000. The apparent Km values of fructose-6-P,2-kinase for Fru-6-P and ATP were 56 and 48 microM, respectively. The apparent Km value for Fru-2,6-P2 of fructose-2,6-bis-phosphatase was 0.4 microM, and the Ki for Fru-6-P was 12.5 microM. The enzyme was bifunctional, and the phosphatase activity was 2.5 times higher than the kinase activity. The enzyme was not phosphorylated by cAMP-dependent protein kinase. The amino acid composition of the skeletal muscle enzyme was similar to that of the rat liver enzyme, and the carboxyl terminus sequence (His-Tyr) was the same as that of the liver enzyme. The tryptic peptides generated from the liver and skeletal muscle enzymes were identical except for two peptides. A peptide corresponding to nucleotides 14-28 of the rat liver enzyme was not detected in the skeletal muscle enzyme. A peptide whose amino acid sequence was Thr-Ala-Ser-Ile-Pro-Gln-Phe-Thr-Asn-Ser-Pro-Thr-Met-Val-Ile-Met-Val-Gly-Leu-Pro - Ala-Arg was also isolated. This peptide was the same as that of rat liver enzyme (nucleotides 31-52) containing the phosphorylation site except in the muscle enzyme two amino terminus amino acids, Gly-Ser(P), have been altered to Thr-Ala. Thus, the rat skeletal muscle enzyme is very similar in structure to the rat liver enzyme except for the lack of possibly one peptide and the lack of a phosphorylation site by the substitution of the target Ser with Ala.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号