首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research in our laboratory revealed that the introduction of Bacillus cereus UW85 can increase the populations of bacteria from the Cytophaga-Flavobacterium (CF) group of the Bacteroidetes phylum in the soybean rhizosphere, suggesting that these rhizosphere microorganisms have a beneficial relationship (G. S. Gilbert, J. L. Parke, M. K. Clayton, and J. Handelsman, Ecology 74:840-854, 1993). In the present study, we determined the frequency at which CF bacteria coisolated with B. cereus strains from the soybean rhizosphere and the mechanism by which B. cereus stimulates the growth of CF rhizosphere strains in root exudate media. In three consecutive years of sampling, CF strains predominated among coisolates obtained with B. cereus isolates from field-grown soybean roots. In root exudate media, the presence of B. cereus was required for CF coisolate strains to reach high population density. However, rhizosphere isolates from the phylum Proteobacteria grew equally well in the presence and absence of B. cereus, and the presence of CF coisolates did not affect the growth of B. cereus. Peptidoglycan isolated from B. cereus cultures stimulated growth of the CF rhizosphere bacterium Flavobacterium johnsoniae, although culture supernatant from B. cereus grown in root exudate media did not. These results suggest B. cereus and CF rhizosphere bacteria have a commensal relationship in which peptidoglycan produced by B. cereus stimulates the growth of CF bacteria.  相似文献   

2.
The purpose of this study was to investigate the diversity of cultivable phosphate solubilising (PSB) and total bacteria originated from 384 rhizospheric acidic soils samples of tea plants grown at 32 locations. Over 900 rhizoplane bacteria were randomly selected from agar-solidified trypticase soy broth, and identified using fatty acid methyl ester (FAME) profiles. Based on FAME profiles, 53 bacterial genera were identified with a similarity index >0.3, but 60.3% of the identified isolates belonged to five genera: Bacillus (34.6%), Pseudomonas (8.9%), Stenotrophomonas (6.1%), Paenibacillus (5.9%) and Arthrobacter (4.8%). The bacilli group comprised many different species, with the most abundant being B. cereus, B. megaterium and B. sphaericus. The main identified Pseudomonads included P. fluorescens, P. putida, and P. alcaligenes. About 30.4% of the bacterial isolates could not be classified to genus since their similarity indices were <0.3 indicating no close matches. Most of the total and P-solubilizing bacteria isolated were Gram positive (61.3 and 52.3%), and Gram negative constituted only 38.7 and 47.7%. Out of the 214 PSB from a pool of 506 bacterial isolates recovered on the selective media from the rhizosphere of tea, 74 of them were characterized by carbon sources using BIOLOGM GN2 and GP2 plates. Bacillus, Pseudomonas, Paenibacillus and Stenotrophomonas genera were the most prominent P-solubilizing groups in the rhizosphere and soil populations analyzed. B. cereus, P. fluorescens, S. maltophilia, B. megaterium, P. putida, B. sphaericus and Paenibacillus polymyxa were the most frequent P-solubilizing species in the acidic tea rhizosohere soils. Selected Gram-positive PSB appeared to favour carbohydrates, and Gram-negative bacteria appeared to favour carboxylic acids, amino acids and carbohydrates as carbon sources. Selected phosphate solubilizing acid tolerant strains showed high variability in utilizing various carbon sources.  相似文献   

3.
We examined 154 Norwegian B. cereus and B. thuringiensis soil isolates (collected from five different locations), 8 B. cereus and 2 B. thuringiensis reference strains, and 2 Bacillus anthracis strains by using fluorescent amplified fragment length polymorphism (AFLP). We employed a novel fragment identification approach based on a hierarchical agglomerative clustering routine that identifies fragments in an automated fashion. No method is free of error, and we identified the major sources so that experiments can be designed to minimize its effect. Phylogenetic analysis of the fluorescent AFLP results reveals five genetic groups in these group 1 bacilli. The ATCC reference strains were restricted to two of the genetic groups, clearly not representative of the diversity in these bacteria. Both B. anthracis strains analyzed were closely related and affiliated with a B. cereus milk isolate (ATCC 4342) and a B. cereus human pathogenic strain (periodontitis). Across the entire study, pathogenic strains, including B. anthracis, were more closely related to one another than to the environmental isolates. Eight strains representing the five distinct phylogenetic clusters were further analyzed by comparison of their 16S rRNA gene sequences to confirm the phylogenetic status of these groups. This analysis was consistent with the AFLP analysis, although of much lower resolution. The innovation of automated genotype analysis by using a replicated and statistical approach to fragment identification will allow very large sample analyses in the future.  相似文献   

4.
Infection of Galleria mellonella by feeding a mixture of Bacillus thuringiensis spores or vegetative bacteria in association with the toxin Cry1C results in high levels of larval mortality. Under these conditions the toxin or bacteria have minimal effects on the larva when inoculated separately. In order to evaluate whether G. mellonella can function as an oral infection model for human and entomo-bacterial pathogens, we tested strains of Bacillus cereus, Bacillus anthracis, Enterococcus faecalis, Listeria monocytogenes, Pseudomonas aeruginosa and a Drosophila targeting Pseudomonas entomophila strain. Six B. cereus strains (5 diarrheal, 1 environmental isolate) were first screened in 2nd instar G. mellonella larvae by free ingestion and four of them were analyzed by force-feeding 5th instar larvae. The virulence of these B. cereus strains did not differ from the B. thuringiensis virulent reference strain 407Cry with the exception of strain D19 (NVH391/98) that showed a lower virulence. Following force-feeding, 5th instar G. mellonella larvae survived infection with B. anthracis, L. monocytogenes, E. faecalis and P. aeruginosa strains in contrast to the P. entomophila strain which led to high mortality even without Cry1C toxin co-ingestion. Thus, specific virulence factors adapted to the insect intestine might exist in B. thuringiensis/B. cereus and P. entomophila. This suggests a co-evolution between host and pathogens and supports the close links between B. thuringiensis and B. cereus and more distant links to their relative B. anthracis.  相似文献   

5.
Numerous species of soil bacteria which flourish in the rhizosphere of plants or around plant tissues stimulate plant growth and reduce nematode population by antagonistic behavior. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The effects of six isolates of PGPR Pseudomonas putida, Pseudomonas fluorescens, Serratia marcescens, Bacillus amyloliquefaciens, Bacillus subtilis and Bacillus cereus, were studied on tomato plant growth and root knot nematode reproduction after 45 days from nematode infection. The highest number of shoot dry weight/g (43.00 g) was detected in the plant treated with S. marcescens; then P. putida (34.33 g), B. amyloliquefaciens (31.66 g), P. fluorescens (30.0 g), B. subtilis (29.0 g), B. cereus (27.0 g) and nematode alone (untreated) 20 g/plant. While the highest number of plant height was observed when plant was treated with S. marcescens, P. fluorescens, P. putida, B. amyloliquefaciens and P. putida 52.66, 50.66, 48 and 48 cm respectively. No significant differences were seen between previous treatments but only had significant differences compared with untreated plant. The highest number of fruit/plant was observed when plants were treated with S. marcescens (10.66), then B. amyloliquefaciens (8.66), P. putida (8), P. fluorescens (8) and B. cereus (7.66). No significant differences between the last 4 treatments, but all had significant differences compared with untreated plants. The highest weight of plant yield (g) was observed with S. marcescens (319.6 g/plant) and the lowest weight of plant yield was observed in plants treated with nematode alone (untreated). On the other hand, the lowest numbers of J2/10 g of soil (78), galls/root, (24.33) galls/root, egg masses/root (12.66) and egg/egg masses were observed in the plants treated with S. marcescens.  相似文献   

6.
The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts.  相似文献   

7.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   

8.
Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed.  相似文献   

9.
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.  相似文献   

10.
Heat-stable exotoxin production by 740 strains of Bacillus thuringiensis and related bacteria was investigated using the housefly, Musca domestica, from the following viewpoints: (1) the relation-ship between B. thuringiensis flagellar (H) serotypes and exotoxin production and (2) the exotoxin production by Bacillus species other than B. thuringiensis. Of 437 isolates belonging to 11 serotypes of B. thuringiensis which had been confirmed to produce parasporal inclusions, 35 isolates belonging to serotypes 1, 3a:3b, 4a:4c, and 10 produced heat-stable exotoxin. Exotoxin was not detected in the isolates of serotypes 3a, 4a:4b, 5a:5b, 5a:5c, 6, 7, and 8a:8b. No heat-stable exotoxin was demonstrated in 28 acrystalliferous isolates which possessed H antigens of B. thuringiensis serotypes 1, 3a, 4a:4b, 4a:4c, 5a:5c, 6, 7, 10, 11a:11c, and 12. A total of 270 B. cereus isolates which did not possess B. thuringiensis H antigen were examined and three isolates were found to produce heat-stable exotoxin. No heat-stable exotoxin was produced by B. subtilis (two strains), B. natto (one strain), and B. megaterium (two strains). These results indicate that the heat-stable exotoxin production in B. thuringiensis is a strain-specific property rather than a serotype(subspecies)-specific property.  相似文献   

11.
Our study found that except Novosphingobium resinovorum (B5) Salvia miltiorrhiza root endophytic bacteria Pseudomonas brassicacearum sub sp. neoaurantiaca (B1), Rhizobium radiobacter (B2), Pseudomonas thivervalensis (B3), Pseudomonas frederiksbergensis (B4) significantly improved the activity of key enzymes 3-hydroxy-3-methyglutary1-CoA reductase and 1-deoxy-d-xylulose-5-phosphate synthase in the biosynthetic pathway of tanshinones. Specifically, HMGR activity with B1 treatment increased 2.1-fold that of control, 1-deoxy-d-xylulose-5-phosphate synthase activity with B2 treatment increased 5.0-fold that of control, which caused a significant increase in tanshinone content in the hairy roots. The dihydrotanshinone I and cryptotanshinone content under B1 treatment increased 19.2-fold and 11.3-fold, respectively, and total tanshinone content increased 3.7-fold that of control. The five endophytic bacteria B1, B2, B3, B4 and B5 all significantly decreased phenylalanine ammonia-lyase and tyrosine aminotransferase activity in hairy roots, of which, B3 treatment decreased phenylalanine ammonia-lyase activity by 46.2 %, and B2 treatment decreased tyrosine aminotransferase activity by 44.7 % compared with the control. Each of the five endophytic bacteria decomposed rosmarinic acid and salvianolic acid B, which caused a significant decrease in rosmarinic acid and salvianolic acid B content in hairy roots, with B2 treatment decreasing rosmarinic acid and salvianolic acid B content by 94.5 and 89.0 %, respectively, compared with the control. The five endophytic bacteria also inhibited the growth of S. miltiorrhiza hairy roots, of which, B2 and B4 treatment decreased hairy root biomass by 55.2 and 51.3 %, respectively, compared with the control, while hairy roots promoted the growth of B4 and B5 and inhibited the growth of B1 and B3.  相似文献   

12.
The Bacillus cereus group of bacteria comprises soil-dwelling saprophytes but on occasion these bacteria can cause a wide range of diseases in humans, including food poisoning, systemic infections and highly lethal forms of anthrax. While anthrax is almost invariably caused by strains from a single evolutionary lineage, Bacillus anthracis, variation in the virulence properties of strains from other lineages has not been fully addressed. Using multi-locus sequence data from 667 strains, we reconstructed the evolutionary history of the B. cereus group in terms of both clonal inheritance and recombination. The strains included 155 clinical isolates representing B. anthracis, and isolates from emetic and diarrhoeal food poisoning, septicaemia and related infections, wound, and lung infections. We confirmed the existence of three major clades and found that clinical isolates of B. cereus (with the exception of emetic toxin-producing strains) are evenly distributed between and within clades 1 and 2. B. anthracis in particular and emetic toxin-producing B. cereus show more clonal structure and are restricted to clade 1. Our characterization of the patterns of genetic exchange showed that there exist partial barriers to gene flow between the three clades. The pathogenic strains do not exhibit atypically high or low rates of recombination, consistent with the opportunistic nature of most pathogenic infections. However, there have been a large number of recent imports in clade 1 of strains from external origins, which is indicative of an on-going shift in gene-flow boundaries for this clade.  相似文献   

13.
《农业工程》2019,39(5):398-405
This study carried out to identify certain microbial allelochemicals with antifungal activity of some rhziobacterial isolates against Bipolaris sorokiniana fungi. The fungicidal activity of isolated microbe metabolites was compared based on inhibition % of fungal growth. Results showed that ethyl acetate crude extracts with two concentrations (500 and 1000 ppm) of Pseudomonas geniculata (SC) and Bacillus cereus (S4) were the most efficient isolates recorded inhibition % 33.62 and 52.59% followed by S4 (Bacillus cereus (ATCC 14579) which achieved inhibition % 33.62 and 46.55% at the same concentrations, respectively. After 4 days.The constituents analyzed by LC-MS/MS and FTIR of the ethyl acetate extracts of the Pseudomonas geniculata ATCC19374 were afforded aminobutyric acid, 1,4-benzoquinone, coumaric acid, sinapic acid, tryptophan amino acid, Succinic acid and ferulic acid. While, the secondary metabolites of (Bacillus cereus ATCC 14579 extract were aminobutyric acid, 1,4-benzoquinone, coumaric acids, sinapic acid, ferulic acid and benzoic acid. Results indicated that the isolates of Pseudomonas geniculata ATCC19374 and Bacillus cereus ATCC 14579 could be use as a good element in plant root rot pathogen Bipolaris sorokiniana management.  相似文献   

14.
In the present survey, quorum quenching activity was examined from a biocontrol point of view. Acyl-homoserine lactone (AHL) degrading bacteria were isolated from tomato rhizosphere using two standard bioreporter strains and different synthetic AHLs and then identified according to 16S rDNA sequences. Five isolates capable of inactivating both short and long 3oxo-substituted AHLs showed high similarity with the genera Bacillus, Microbacterium and Arthrobacter, and thereby Bacillus cereus U92 was determined as the most efficient quorum quencher strain. In the quantitative experiments, this strain remarkably inactivated all synthetic AHLs up to 80%. In the laboratory co-cultures, B. cereus U92 efficiently quenched QS-regulated phenotypes in Agrobacterium tumefaciens, Pseudomonas aeruginosa, Pseudomonas chlororaphis and Chromobacterium violaceum. The strain successfully reduced the frequency of Ti-plasmid conjugal transfer in A. tumefaciens by about 99% in the binary cultures. Meanwhile, in a more natural environment, this strain acted as a biocontrol agent, efficient in alleviating QS-regulated crown gall incidence on tomato roots (up to 90%) as well as attenuating Pectobacterium soft rot on potato tubers (up to 60%). On the other hand, reducing phenazine production in P. chlororaphis operated as a suppressor of its QS-regulated biocontrol activity and also inhibited pyocyanin production in P. aeruginosa, a plant growth-promoting bacterium, by 75%. In general, B. cereus U92 seems very promising in the biological control of pathogenic bacteria; however, its broad AHL-degrading activity has a detrimental role on beneficial microbes which should not be neglected.  相似文献   

15.
We previously demonstrated a genetic basis in tomato for support of the growth of a biological control agent, Bacillus cereus UW85, in the spermosphere after seed inoculation (K. P. Smith, J. Handelsman, and R. M. Goodman, Proc. Natl. Acad. Sci. USA 96:4786–4790, 1999). Here we report results of studies examining the host effect on the support of growth of Bacillus and Pseudomonas strains, both inoculated on seeds and recruited from soil, using selected inbred tomato lines from the recombinant inbred line (RIL) population used in our previous study. Two tomato lines, one previously found to support high and the other low growth of B. cereus UW85 in the spermosphere, had similar effects on growth of each of a diverse, worldwide collection of 24 B. cereus strains that were inoculated on seeds and planted in sterilized vermiculite. In contrast, among RILs that differed for support of B. cereus UW85 growth in the spermosphere, we found no difference for support of growth of the biocontrol strains Pseudomonas fluorescens 2-79 or Pseudomonas aureofaciens AB254. Thus, while the host effect on growth extended to all strains of B. cereus examined, it was not exerted on other bacterial species tested. When seeds were inoculated with a marked mutant of B. cereus UW85 and planted in soil, RIL-dependent high and low support of bacterial growth was observed that was similar to results from experiments conducted in sterilized vermiculite. When uninoculated seeds from two of these RILs were planted in soil, changes in population levels of indigenous Bacillus and fluorescent Pseudomonas bacteria differed, as measured over time by culturing and direct microscopy, from growth patterns observed in the inoculation experiments. Neither RIL supported detectable levels of growth of indigenous Bacillus soil bacteria, while the line that supported growth of inoculated B. cereus UW85 supported higher growth of indigenous fluorescent pseudomonads and total bacteria. The vermiculite system used in these experiments was predictive for growth of B. cereus UW85 inoculated on seeds and grown in soil, but the patterns of growth of inoculated strains—both Bacillus and Pseudomonas spp.—did not reflect host genotype effects on indigenous microflora recruited from soil to the spermosphere.  相似文献   

16.
《Journal of Asia》2023,26(1):102036
An investigation was carried out to isolate, identify and molecularly characterize the cellulose-degrading bacterial isolates from the guts of four white grub species (Anomala bengalensis, Brahmina coriacea, Holotrichia longipennis and Holotrichia setticollis) native to Uttarakhand, Himalayas through 16S rRNA sequencing. A total of 178 bacterial strains were isolated from different gut compartments of selected white grub species, of which 95 bacterial isolates showed cellulose metabolizing activities in the CMC assay. Maximum degraders i.e., 38 were isolated from A. bengalensis, of which 18 were isolated from the fermentation chamber. The value of cellulolytic index ranged between 0.05 and 16 showing a variable cellulolytic activity by degraders. A total of 25 potent strains of cellulose-degrading bacteria recording cellulolytic activity > 1 were isolated and sequenced for 16S rRNA gene. Bacillus stratosphericus strain CBG4MG1 (10.78 ± 4.18), Bacillus cereus strain CBG2FC1 (10.33 ± 3.53), Bacillus sp. strain CBG3MG2 (7.28 ± 0.16) and Paenibacillus ginsengagri strain CBG1FC2 (5.66 ± 2.67) were the most potent cellulose-degrading bacteria isolated from the gut of B. coriacea, H. longipennis, H. setticollis and A. bengalensis, respectively. Thus, the cellulolytic bacteria isolated from the gut of selected white grub species may be good sources for profiling novel isolates for industrial use besides identifying eco-friendly solutions for agro-waste management.  相似文献   

17.
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous soil bacterium and an opportunistic pathogen that is a common cause of food poisoning. In contrast to the differences in phenotypes, we show by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes that B. anthracis should be considered a lineage of B. cereus. This determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. cereus group.  相似文献   

18.
Accumulation of petroleum hydrocarbon residual considered a major environmental problem in the kingdom of Saudi Arabia cause of intensive efforts for oil detecting. Until now, In situ biodegradation considered the most effective method for petroleum hydrocarbon residual biodegradation. The aim of this study is isolation and identification biodegradable capability bacteria from contaminated sites in Khurais oil field, Dhahran, Saud Arabia via Different morphological and biochemical and molecular methods. Furthermore, degradation level in contaminated liquid medium and soil were evaluated. Three bacterial strains were selected from petroleum-contaminated soils of Khurais oil field depending on their capacity to grow in the existence of hydrocarbon components and identified according to morphological, biochemical. Interestingly, 16S rDNA sequencing fingerprinting results confirmed our bacterial identification as Bacillus subtilis, Pseudomonas aeruginosa and Bacillus cereu. Phyllogenetic tree was constructed and genetic similarity was calculated according to alignments results. Biodegradation patterns for different three isolates were reflected varied degradation ability for three isolates regarding incubation time. Different features were studied for three biodegrading bacterial strains and identified as Bacillus subtilis, Pseudomonas aeruginosa and Bacillus cereus. Remarkable degradation rate % patterns for hydrocarbons residual were recorded for all three isolates with varied.  相似文献   

19.
About 377 guar (Cyamopsis tetragonoloba) rhizobacteria were isolated from cultivated soils of north-west India (Thar Desert) and their antifungal activity against Macrophomina phaseolina (strains of groundnut, mungbean and guar) and Fusarium oxysporum (strains of chickpea and cumin) was examined. Isolates were characterised for generic types and physiological/functional diversity. About 19% isolates representing 24% locations were inhibitory to fungal growth. Isolates 009071, 009073, 009078 and 102354 recorded maximum inhibition of pathogenic fungi on plates. Isolate 034206 gave highest %RI, 009073 showed maximum protease activity and 102354 gave highest salt tolerance. Net house and field screening results revealed that isolates 004052, 009071, 009073, 001001, 094340 and 102354 had potential for biocontrol of disease. Partial sequencing of 16S rRNA gene of 61 isolates showed that 85% of isolates belonged to genus Bacillus. Phylogenetically, however, there were four clusters in the Bacillus group comprising of Bacillus subtilis, B. cereus, B. pumilus and B. sphaericus. One isolate was identified as B. flexus, while six isolates were Bacillus spp. Four isolates were identified as Achromobacter xylosoxidans, two as Bacterium (unclassified bacteria), and one each as Ochrobactrum intermedium, Pseudomonas aeruginosa and Ralstonia sp.  相似文献   

20.
Mosquitocidal bacteria, M413 and C32 have been isolated from sediment samples collected from woodland and ditch, respectively. Gas chromatographic analysis of fatty acids methyl esters (GC-FAME) and 16S rRNA gene sequence alignment results showed these isolates belong to Bacillus cereus. The SDS-PAGE analysis of sporulated cultures of both isolates showed two major bands very similar in size. Interestingly, however, M413 is mainly toxic to 4th instars of Ochlerotatus taeniorhynchus whereas C32 is to those of Culex quinquefasciatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号