首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review summarizes contemporary data on structure and function of photoactive pigment--enzyme complexes of the chlorophyll precursor that undergoes photochemical transformation to chlorophyllide. The properties and functions of the complex and its principal components are considered including the pigment (protochlorophyllide), the hydrogen donor (NADPH), and the photoenzyme protochlorophyllide oxidoreductase (POR) that catalyzes the photochemical production of chlorophyllide. Chemical variants of the chlorophyll precursor are described (protochlorophyllide, protochlorophyll, and their mono- and divinyl forms). The nature and photochemical activity of spectrally distinct native protochlorophyllide forms are discussed. Data are presented on structural organization of the photoenzyme POR, its substrate specificity, localization in etioplasts, and heterogeneity. The significance of different POR forms (PORA, PORB, and PORC) in adaptation of chlorophyll biosynthesis to various illumination conditions is considered. Attention is paid to structural and functional interactions of three main constituents of the photoactive complex and to possible existence of additional components associated with the pigment-enzyme complex. Historical aspects of the problem and the prospects of further investigations are outlined.  相似文献   

2.
Protochlorophyllide holochrome was prepared from dark grown wheat seedlings in a saponin containing medium by precipitation with ammonium sulfale and differential centrifugaiion. During the different steps of purification the spectral properties and the photoconvertibility of prolochlorophyllide holochrome were measured concomitantly with its quinone and carotenoid content. Photoconvertible protochlorophyllide holochrome was enriched in quinones hut depleted of carolenoids compared with the whole etiolated leaf. The fractions containing long wavelength forms of photoconvcrtible protochlorophyllidc had a constant molar ratio of plastoquinonc. phylloquinone and protochlorophyllide of 1:1:2. The possibility of the prenylquinones to function as electron or hydrogen carriers between a hydrogen donor and protochlorophvliide is discussed.  相似文献   

3.
Recent in vitro studies have led to speculation that a novel light-harvesting protochlorophyllide a/b-binding protein complex (LHPP) might exist in dark-grown angiosperms. Structurally, it has been suggested that LHPP consists of a 5:1 ratio of dark-stable ternary complexes of the light-dependent NADPH: protochlorophyllide oxidoreductases A and B containing nonphotoactive protochlorophyllide b and photoactive protochlorophyllide a, respectively. Functionally, LHPP has been hypothesized to play major roles in establishing the photosynthetic apparatus, in protecting against photo-oxidative damage during greening, and in determining etioplast inner membrane architecture. However, the LHPP model is not compatible with other studies of the pigments and the pigment-protein complexes of dark-grown angiosperms. Protochlorophyllide b, which is postulated to be the major light-harvesting pigment of LHPP, has, for example, never been detected in etiolated seedlings. This raises the question: does LHPP exist?  相似文献   

4.
5.
A chloroplast-encoded gene, designated chlB, has been isolated from Chlamydomonas reinhardtii, its nucleotide sequence determined, and its role in the light-independent reduction of protochlorophyllide to chlorophyllide demonstrated by gene disruption experiments. The C. reinhardtii chlB gene is similar to open reading frame 563 (orf563) of C. moewusii, and its encoded protein is a homolog of the Rhodobacter capsulatus bchB gene product that encodes one of the polypeptide components of bacterial light-independent protochlorophyllide reduction. To determine whether the chlB gene product has a similar role in light-independent protochlorophyllide reduction in this alga, a series of plasmids were constructed in which the aadA gene conferring spectinomycin resistance was inserted at three different sites within the chlB gene. The mutated chlB genes were introduced into the Chlamydomonas chloroplast genome using particle gun-mediated transformation, and homoplasmic transformants containing the disrupted chlB genes were selected on the basis of conversion to antibiotic resistance. Individual transformed strains containing chlB disruptions were grown in the dark or light, and 17 of the 18 strains examined were found to have a "yellow-in-the-dark" phenotype and to accumulate the chlorophyll biosynthetic precursor protochlorophyllide. RNA gel blot analysis of chlB gene expression in wild-type cells indicated that the gene was transcribed at low levels in both dark- and light-grown cells. The results of these studies support the involvement of the chlB gene product in light-independent protochlorophyllide reduction, and they demonstrate that, similar to its eubacterial predecessors, this green alga requires at least three components (i.e., chlN, chlL, and chlB) for light-independent protochlorophyllide reduction.  相似文献   

6.
The levels of protochlorophyllide and protochlorophyll of pigmentmutant C-2A' of Scenedesmus obliquus grown in darkness dependupon the calcium concentration in the growth medium. In thepresence of calcium both the protochlorophyllide and protochlorophylllevels decrease upon irradiation whereas the amount of photoreducedchlorophyllide increases. In contrast to light-dependent protochlorophyllide reduction,the activity of light-independent protochlorophyllide reductionis higher in calcium free cultures compared to those grown inthe presence of calcium. It is discussed whether calcium actsdirectly on the activity of the protochlorophyllide oxidoreductaseor stabilizes the newly formed chlorophyllide. (Received September 1, 1989; Accepted February 19, 1990)  相似文献   

7.
The effects of modulated ADP/ATP and NADPH/NADP+ ratios, and of protein kinase inhibitors, on the in vitro reformation of phototransformable protochlorophyllide, i.e. the aggregated ternary complexes between NADPH, protochlorophyllide, and NADPH-protochlorophyllide oxidoreductase (POR, EC 1.3.1.33), in etioplast membranes isolated from dark-grown wheat (Triticum aestivum) were investigated. Low temperature fluorescence emission spectra (–196 °C) were used to determine the state of the pigments. The presence of spectral intermediates of protochlorophyllide and the reformation of phototransformable protochlorophyllide were reduced at high ATP, but favoured by high ADP. Increased ADP level partly prevented the chlorophyllide blue-shift. The protein kinase inhibitor K252a prevented reformation of phototransformable protochlorophyllide without showing any effect on the chlorophyllide blue-shift. Addition of NADPH did not overcome the inhibition. The results indicate that protein phosphorylation plays a role in the conversion of the non-phototransformable protochlorophyllide to POR-associated phototransformable protochlorophyllide. The possible presence of a plastid ADP-dependent kinase, the activity of which favours the formation of PLBs, is discussed. Reversible protein phosphorylation is suggested as a regulatory mechanism in the prolamellar body formation and its light-dependent dispersal by affecting the membrane association of POR. By the presence of a high concentration of phototransformable protochlorophyllide, prolamellar bodies can act as light sensors for plastid development. The modulation of plastid protein kinase and protein phosphatase activities by the NADPH/NADP+ ratio is suggested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Using fluorescence spectroscopy, we have demonstrated that isolated envelope membranes from mature spinach chloroplasts catalyze the phototransformation of endogenous protochlorophyllide into chlorophyllide in presence of NADPH, but not in presence of NADH. Protochlorophyllide reductase was characterized further using monospecific antibodies (anti-protochlorophyllide reductase) raised against the purified enzyme from oat. In mature spinach chloroplasts, protochlorophyllide reductase is present only in envelope membranes. We have demonstrated that the envelope protochlorophyllide reductase, a 37,000-dalton polypeptide, is only a minor envelope component and is present on the outer surface of the outer envelope membrane. This conclusion is supported by several lines of evidence: (a) the envelope polypeptide that was immunodecorated with anti-protochlorophyllide reductase can be distinguished from the major 37,000-dalton envelope polypeptide E37 (which was identified by monospecific antibodies) only after two-dimensional polyacrylamide gel electrophoresis; (b) the envelope protochlorophyllide reductase was hydrolyzed when isolated intact chloroplasts were incubated in presence of thermolysin; and (c) isolated intact chloroplasts strongly agglutinate when incubated in presence of antibodies raised against protochlorophyllide reductase. These results demonstrate that major differences exist between chloroplasts and etioplasts with respect to protochlorophyllide reductase levels and localization. The presence on the chloroplast envelope membrane of both the substrate (protochlorophyllide) and the enzyme (protochlorophyllide reductase) necessary for chlorophyllide synthesis could have major implications for the understanding of chlorophyll biosynthesis in mature chloroplasts.  相似文献   

9.
Protochlorophyllide reductase catalyzes the reductive formation of chlorophyllide from protochlorophyllide during biosynthesis of chlorophylls and bacteriochlorophylls. The light-independent (dark) form of protochlorophyllide reductase plays a key role in the ability of gymnosperms, algae, and photosynthetic bacteria to green (form chlorophyll) in the dark. Genetic and sequence analyses have indicated that dark protochlorophyllide reductase consists of three protein subunits that exhibit significant sequence similarity to the three subunits of nitrogenase, which catalyzes the reductive formation of ammonia from dinitrogen. However, unlike the well characterized features of nitrogenase, there has been no previous biochemical characterization of dark protochlorophyllide reductase. In this study, we report the first reproducible demonstration of dark protochlorophyllide reductase activity from purified protein subunits that were isolated from the purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus. Two of the three subunits (Bchl and BchN) were expressed in R. capsulatus as S tag fusion proteins that facilitated affinity purification. The third subunit (BchB) was co-purified with the BchN protein indicating that BchN and BchB proteins form a tight complex. Dark protochlorophyllide reductase activity was shown to be dependent on the presence of all three subunits, ATP, and the reductant dithionite. The similarity of dark protochlorophyllide reductase to nitrogenase is discussed.  相似文献   

10.
R Parham  C A Rebeiz 《Biochemistry》1992,31(36):8460-8464
Some properties of [4-vinyl] chlorophyllide a reductase are described. This enzyme converts divinyl chlorophyllide a to monovinyl chlorophyllide a. The latter is the immediate precursor of monovinyl chlorophyll a, the main chlorophyll in green plants. [4-Vinyl] chlorophyllide a reductase plays an important role in daylight during the conversion of divinyl protochlorophyllide a to monovinyl chlorophyll a. [4-Vinyl] chlorophyllide a reductase was detected in isolated plastid membranes. Its activity is strictly dependent on the availability of NADPH. Other reductants such as NADH and GSH were ineffective. The enzyme appears to be specific for divinyl chlorophyllide a, and it does not reduce divinyl protochlorophyllide a to monovinyl protochlorophyllide a. The conversion of divinyl protochlorophyllide a to monovinyl protochlorophyllide a has been demonstrated in barley and cucumber etiochloroplasts and appears to be catalyzed by a [4-vinyl] protochlorophyllide a reductase [Tripathy, B.C., & Rebeiz, C.A. (1988) Plant Physiol. 87, 89-94]. On the basis of reductant requirements and substrate specificity, it is possible that two different 4-vinyl reductases may be involved in the reduction of divinyl protochlorophyllide a and divinyl chlorophyllide a to their respective 4-ethyl analogues.  相似文献   

11.
Abstract The effects of gabaculin (3-amino 2,3-dihydrobenzoic acid) and laevulinic acid on the regeneration of protochlorophyllide from exogenous δ-aminolaevulinic acid in leaves of dark-grown barley (Hordeum vulgare) after a brief light treatment were compared. Gabaculin, a potent inhibitor of chlorophyll biosynthesis, did not inhibit this process showing that it affects the formation of δ-aminolaevulinic acid rather than its further metabolism. Laevulinic acid, which is an inhibitor of δ-aminolaevulinic acid dehydratase, prevented regeneration of protochlorophyllide provided pools of intermediates in the biosynthetic sequence were depleted. Formation of relatively large amounts of protochlorophyllide in some experiments suggests a lack of control in the utilization of δ-aminolaevulinic acid for protochlorophyllide synthesis.  相似文献   

12.
The pool size of protochlorophyllide in wheat leaves irradiated for 5 minutes to 6 hours was studied. Protochlorophyllide then accumulated in the dark, but the pool size of regenerated protochlorophyllide was considerably smaller in leaves irradiated for six hours than in leaves irradiated for 5 minutes. The decrease in pool size of regenerated protochlorophyllide was found to take place at the time when the chlorophyll formation had accelerated and reached the linear phase. The protochlorophyllide accumulated is the form with absorption maximum at 650 nm, which is phototransformed to chlorophyllide with maximum absorption at 684 nm. This species goes through the Shibata shift when formed even after 6 hours of irradiation. If leaves, irradiated for 1 or 6 hours, were fed with δ-amino-levulinic acid the protochlorophyllide synthesis was only 1.2 times faster in the leaves irradiated for 6 hours than in those irradiated for 1 hour. In the case of leaves fed with δ-amino-levulinic acid the absorption maximum of protochlorophyllide is at 636 nm and the absorption maximum of the chlorophyllide formed is at 672 nm.  相似文献   

13.
δ-Aminolevulinic acid supplied to dark grown isolated leaves or wheat causes an accumulation of protochlorophyllide which is only partly transformed to chlorophyllide α in continuous light At the same time a considerable photodestruction of both pigments takes place. By a suitable combinations of short lights flashes and dark periods it is possible, however, to obtain at least double the amount of the protochlorophyllide transformed without photodestruction. The transformation isshown to be dependent on the dark interval between the light flashes. Possible connections with the formation of the protein part of the protochlorophyllide holochrome are discussed.  相似文献   

14.
Aronsson H  Sohrt K  Soll J 《Biological chemistry》2000,381(12):1263-1267
Chloroplast differentiation in angiosperm plants depends on the light-dependent conversion of protochlorophyllide to chlorophyllide by NADPH:protochlorophyllide oxidoreductase (PORA; EC 1.6.99.1), a nuclearly encoded protein. The protein import of the precursor form of PORA into plastids was shown previously to strictly depend on the presence of its substrate protochlorophyllide. PORA seemed to follow a novel, posttranslationally regulated import route. Here we demonstrate that the precursor of PORA from barley is imported into isolated barley plastids independently of protochlorophyllide. PORA as well as PORB import is competed for by the precursor of the small subunit of Rubisco. The data demonstrate that the PORA precursor uses the general import pathway into plastids. Furthermore, en route into chloroplasts the pea POR precursor can be cross-linked to the protein import channel in the outer envelope Toc75 from pea.  相似文献   

15.
The chlorophyll repair potential of mature Cucumis chloroplasts incubated in a simple Tris-HCI/sucrose medium is described. The chloroplasts were isolated from green, fully expanded Cucumis cotyledons which were capable of chlorophyll repair. This was evidenced by a functional chlorophyll biosynthetic pathway in the mature tissue. The biosynthesis of protochlorophyllide from exogenous δ-aminolevulinic acid was used as a marker for the operation of the chlorophyll biosynthetic chain between δ-aminolevulinic acid and protochlorophyllide. The conversion of exogenous protochlorophyllide into chlorophyll a was used as a marker for the operation of the chlorophyll pathway beyond protochlorophyllide. It appeared from these studies that contrary to published reports, unfortified fully developed Cucumis chloroplasts incubated in Tris-HCl/sucrose without the addition of cofactors exhibited a partial and limited chlorophyll repair capability. Their net tetrapyrrole biosynthetic competence from δ-aminolevulinic acid was confined to the accumulation of coproporphyrin. No net tetrapyrrole biosynthesis beyond coproporphyrin was observed. However, the plastids were capable of incorporating small amounts of δ-amino-[4-14C]levulinic acid into [14C] protochlorophyllide but were incapable of converting exogenous protochlorophyllide into chlorophyll. After prolonged incubation of the unfortified chloroplasts in the dark, a fluorescent protochlorophyllide-like compound accumulated. This compound [Cp (E430-F631)] exhibited a soret excitation maximum at 430 nm (E430) and a fluorescence emission maximum at 631 nm (F631) in methanol/acetone (4 : 1, v/v). Cp (E430-F631) was shown to be neither protochlorophyllide nor zinc-protochlorophyllide but an enzymatic degradation product of chlorophyll. The exact chemical identity of this compound has not yet been determined.  相似文献   

16.
Etioplast membranes were solubilized with 1 mM Triton X-100in the presence of excess NADPH and protochlorophyllide to isolateNADPH:protochlorophyllide oxidoreductase. The activity of thisreductase was assayed as the formation of chlorophyllide bya single flash and was equivalent to the amount of photoactiveprotochlorophyllide-NADPH-enzyme complex present before illumination.The rate of regeneration of the phtoactive complex was estimatedfrom the time course of chlorophyllide formation under a longflash. The highest rate was 651 nmol chlorophyllide formed min–1mg–1 protein. Photoconversion of protochlorophyllide to chlorophyllide andregeneration of the photoactive protochlorophyllide-NADPH-enzymecomplex were not much affected in a pH range from 6 to 8, atleast for several minutes. The apparent dissociation constantsof the photoactive complex were 0.039 µM for protochlorophyllideand 0.44 µM for NADPH. Triton-solubilized etioplast membraneswere fractionated by glycerol density gradient centrifugationto isolate the NADPH:protochlorophyllide oxidoreductase. Mostof the 36,000-dalton protein, the major protein of the prolamellarbody was recovered in the fraction enriched by NADPH:protochlorophyllideoxidoreductase and protochlorophyllide. Protochlorophyll andcarotenoids were present in different fractions. This is evidencethat the 36,000-dalton protein has the activity of NADPH:protochlorophyllideoxidoreductase and specifically binds protochlorophyllide. Themost highly purified fraction of the enzyme showed an activityof 7.8 nmol chiorophyllide formed flash–1 mg–1 proteinand bound 11.1 nmol protochlorophyllide mg–1 of protein. (Received April 28, 1982; Accepted June 29, 1982)  相似文献   

17.
It is shown that barley (Hordeum vulgare), a dark monovinyl/light divinyl plant species, and cucumber (Cucumis sativus L.) a dark divinyl/light divinyl plant species synthesize monovinyl and divinyl protochlorophyllide in darkness from monovinyl and divinyl protoporphyrin IX via two distinct monovinyl and divinyl monocarboxylic chlorophyll biosynthetic routes. Evidence for the operation of monovinyl monocarboxylic biosynthetic routes consisted (a) in demonstrating the conversion of delta-aminolevulinic acid to monovinyl protoporphyrin and to monovinyl Mg-protoporphyrins, and (b) in demonstrating the conversion of these tetrapyrroles to monovinyl protochlorophyllide by both isolated barley and cucumber etiochloroplasts. Likewise, evidence for the operation of divinyl monocarboxylic chlorophyll biosynthetic routes consisted (a) in demonstrating the biosynthesis of divinyl protoporphyrin and divinyl Mg-protoporphyrins from delta-aminolevulinic acid, and (b) in demonstrating the conversion of the latter tetrapyrroles to divinyl protochlorophyllide. Finally, it was shown that the divinyl tetrapyrrole substrates were metabolized differently by barley and cucumber. For example, divinyl protoporphyrin, divinyl Mg-protoporphyrin, and divinyl Mg-protoporphyrin monoester were converted predominantly to monovinyl protochlorophyllide and to smaller amounts of divinyl protochlorophyllide by barley etiochloroplasts. In contrast, cucumber etiochloroplasts converted the above substrates predominantly to divinyl protochlorophyllide, although smaller amounts of monovinyl protochlorophyllide were also formed. Furthermore, it was shown that monovinyl protochlorophyllide was not formed from divinyl protochlorophyllide either in barley or in cucumber etiochloroplasts. These metabolic differences are explained by the presence of strong biosynthetic interconnections between the divinyl and monovinyl monocarboxylic routes, prior to divinyl protochlorophyllide formation, in barley but not in cucumber.  相似文献   

18.
The primary stages of protochlorophyllide phototransformation in an artificially formed complex containing heterologously expressed photoenzyme protochlorophyllide-oxidoreductase (POR), protochlorophyllide, and NADPH were investigated by optical and ESR spectroscopy. An ESR signal (g = 2.002; H = 1 mT) appeared after illumination of the complex with intense white light at 77 K. The ESR signal appeared with simultaneous quenching of the initial protochlorophyllide fluorescence, this being due to the formation of a primary non-fluorescent intermediate. The ESR signal disappeared on raising the temperature to 253 K, and a new fluorescence maximum at 695 nm belonging to chlorophyllide simultaneously appeared. The data show that the mechanism of protochlorophyllide photoreduction in the complex is practically identical to the in vivo mechanism: this includes the formation of a short-lived non-fluorescent free radical that is transformed into chlorophyllide in a dark reaction.  相似文献   

19.
Dark-grown wheat leaves ( Triticum L. cv. Starke II Weibull) were illuminated repeatedly with light flashes giving partial phototransformation of protochlorophyllide to chlorophyllide. After short flashes (e.g. 15 ms red light, 250 W m−2), transforming only a minor part of the protochlorophyllide present, the first more stable chlorophyll(ide) measured ca 15 s after the phototransformation had its absorption maximum in the red around 672 nm. It stayed there during the following 30 min in darkness. After longer flashes (e.g. 125 ms), transforming a larger portion of the protochlorophyllide, the chlorophyll(ide) formed had its maximum absorption more towards 684 nm and shifted to 672 nm during a subsequent period in darkness. Thus, in this case a Shibata shift took place.
The conditions which produce the "stable" 672 nm form, without a Shibata shift, are discussed. The presence of large amounts of non-transformed protochlorophyllide remaining after the phototransformation seems to be important. Under such conditions it is possible that the Shibata shift is completed within a very short time.
Also the possible existence of two kinds of phototransformable protochlorophyllide is discussed. According to this idea one of the two protochlorophyllide forms produces a chlorophyllide absorbing at 672 nm shortly after phototransformation without having passed a Shibata shift. The other protochlorophyllide form photo-transforms to a chlorophyllide which proceeds through the Shibata shift.  相似文献   

20.
The effects of various inhibitors of nucleic acid and protein synthesis on protochlorophyllide synthesis in dark-grown Phaseolus vulgaris var. Red Kidney have been studied. Actinomycin D, chloramphenicol, and puromycin inhibit the regeneration of protochlorophyllide holochrome (detected as a 650 mμ absorption peak) in vivo in darkness after photoconversion of endogenous protochlorophyllide a to chlorophyllide a; this inhibition does not occur in similarly treated leaves supplied with δ-aminolevulinic acid.

These data suggest that the regeneration of protochlorophyllide results from the synthesis of RNA and enzymes required for the production of δ-aminolevulinate.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号