首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bacillus thuringiensis Berliner has previously been classified via the serological identification of flagellar antigens. However, the phylogenetic relationships among strains of B. thuringiensis cannot be investigated by serotyping. Furthermore, high levels of homology have been found in gene sequences among various strains, complicating the determination of their evolutionary relationships. In order to elucidate the phylogenetic relationships within B. thuringiensis, we analyzed 40 strains belonging to typical serotypes using two approaches: an analysis of small subunit (SSU) rRNA sequences and genome profiling (GP) based on temperature gradient gel electrophoresis of random PCR products. The SSU rRNA analysis resulted in all 40 strains forming a single cluster with Bacillus cereus Frankland & Frankland. The distances among the subclusters were too small to further classify the strains. On the other hand, the phylogenetic analysis based on GP resulted in three clusters of B. thuringiensis strains. These results suggest that GP is a better method for the determination of phylogenetic relationships within B. thuringiensis.  相似文献   

2.
The sunn pests (Eurygaster spp.) which are important pests of wheat and barley, can lead to 100% yield loss in the case of an epidemic. This study was conducted to characterize the entomopathogenic fungi, obtained from the sunn pests collected from different overwintering areas of Turkey and determine their pathogenicity. Seventeen Beauveria pseudobassiana, 12 Beauveria bassiana, 16 Cordyceps farinosa, 1 Purpureocillium lilacinum, and 2 Clonostachys rosea species were identified. Pathogenicity tests were performed with three B. pseudobassiana, two B. bassiana, four C. farinosa, and one P. lilacinum isolates. B. pseudobassiana isolates BB34 and AF4 caused 100% death on the 9th day, and another B. pseudobassiana isolate E512 caused 100% death on the 12th day. C. farinosa isolate KOKA2 caused 95.8% death on the 15th day. Ultimately, B. pseudobassiana was determined to be the most prevalent and virulent species on sunn pests.  相似文献   

3.
Beauveria bassiana is an important entomopathogenic fungus that not only often causes infection and epidemics of wild insects but some strains also show pathogenicity to the silkworm, Bombyx mori. The present study is about diversity of B. bassiana isolated from the silkworm in southwest China. Five strains of B. bassiana were isolated from infected silkworm. Two isolates, GXtr1009 and GXtr1010, were isolated from infected silkworms treated with two kinds of biological pesticides applied in Guangxi province, and three isolates, SCsk1006, YNsk1106 and GXsk1011, were collected from naturally infected silkworms from different geographical locations in Yunnan and Sichuan. All of the isolates showed highly similar conidia and conidial fructification, but the colony characteristics demonstrated great differences among the isolates. The ITS and 18S rDNA sequence analysis was sufficient to identify all five isolates as B. bassiana. However, the dendrogram, based on the ISSR data, produced two large genetic groups. GXtr1009 and GXtr1010 comprised one group, and SCsk1006, YNsk1106 and GXsk1011 converged in a different large group. The results suggested that, although all of these five B. bassiana strains were pathogenic to silkworms, strains of biological pesticides could be differentiated from strains of naturally infected silkworm via ISSR analysis.  相似文献   

4.
Species in the fungal genus Beauveria are pathogens of invertebrates and have been commonly used as the active agent in biopesticides. After many decades with few species described, recent molecular approaches to classification have led to over 25 species now delimited. Little attention has been given to the mitochondrial genomes of Beauveria but better understanding may led to insights into the nature of species and evolution in this important genus. In this study, we sequenced the mitochondrial genomes of four new strains belonging to Beauveria bassiana, Beauveria caledonica and Beauveria malawiensis, and compared them to existing mitochondrial sequences of related fungi. The mitochondrial genomes of Beauveria ranged widely from 28,806 to 44,135 base pairs, with intron insertions accounting for most size variation and up to 39% (B. malawiensis) of the mitochondrial length due to introns in genes. Gene order of the common mitochondrial genes did not vary among the Beauveria sequences, but variation was observed in the number of transfer ribonucleic acid genes. Although phylogenetic analysis using whole mitochondrial genomes showed, unsurprisingly, that B. bassiana isolates were the most closely related to each other, mitochondrial codon usage suggested that some B. bassiana isolates were more similar to B. malawiensis and B. caledonica than the other B. bassiana isolates analyzed.  相似文献   

5.
The phylogenetic lineage, taxonomic affiliation and interrelationships of important asexual entomopathogenic fungal genera were studied using the sequences of partial regions of β-tubulin and rRNA genes. The species structures of Beauveria bassiana and Nomuraea rileyi were also investigated. A total of 147 fungal entries covering 94 species were analysed. Phylogenetic analysis placed all the asexual entomopathogenic fungal species analysed, in the family Clavicipitaceae of the order Hypocreales of Ascomycota. Deep phylogenetic lineages were observed in B. bassiana iterating the complex nature of this species. Some of the isolates assigned to this species separated out more distinctly than morphologically distinguishable genera. Cryptic speciation was also evident in N. rileyi. It is concluded that the asexual fungi with entomopathogenic habit arose from a single lineage in sexual Clavicipitaceae.  相似文献   

6.
In Slovakia, a diversity of entomopathogenic fungi (Ascomycota, Hypocreales) associated with outbreaks of Ips typographus was studied in 81 localities and as many as 113 in vitro cultures of five entomopathogenic species were isolated from infected individuals: Beauveria bassiana (87 isolates), B. pseudobassiana (14 isolates), B. caledonica (6 isolates), Lecanicillium lecanii (4 isolates) and Isaria farinosa (2 isolates). B. pseudobassiana is recorded in natural populations of I. typographus for the first time. Biological properties of selected Beauveria isolates, including colony growth, biomass production, conidia yield and pathogenicity to I. typographus adults, were studied in a series of laboratory bioassays and much intra- and interspecific variability was detected. B. bassiana isolates produced biomass or conidia at significantly higher rate than B. pseudobassiana and B. caledonica isolates. Two B. bassiana isolates were selected as the most virulent to bark beetle adults, demonstrating a mean LC50 ranging from 0.72 to 2.05?×?106 conidia ml?1, and were qualified as promising candidates for biocontrol of I. typographus. Their virulence was significantly higher than that of the mycoinsecticides Boverol®, which was used as a reference strain in the virulence bioassays.  相似文献   

7.
The entomopathogenic fungus Beauveria bassiana is widely used as a biological control agent (BCA) for insect pest control, with fungal propagules being either incorporated into the potting media or soil or sprayed directly onto the foliage or soil. To gain a better understanding of entomopathogenic fungal ecology when applied as a BCA to the soil environment, a case study using tag-encoded 454 pyrosequencing of fungal ITS sequences was performed to assess the fate and potential effect of an artificially applied B. bassiana strain on the diversity of soil fungal communities in an agricultural field in India. Results show that the overall fungal diversity was not influenced by application of B. bassiana during the 7 weeks of investigation. Strain-specific microsatellite markers indicated both an establishment of the applied B. bassiana strain in the treated plot and its spread to the neighboring nontreated control plot. These results might be important for proper risk assessment of entomopathogenic fungi-based BCAs.  相似文献   

8.
The genetic diversity of Beauveria bassiana was investigated by comparing 40 isolates collected from summer and overwintering populations of Sunn pest from different areas in Syria and Turkey, using amplified fragment length polymorphism (AFLP) markers. Considerable genetic variability among B. bassiana isolates was revealed. The examined isolates were divided into three distinct clusters (A, B, and C). Within these clusters, the summer isolates from Syria and Turkey were grouped together in three sub-clusters (A3, A4, and B2). Also, principal coordinate analyses (PCA) showed clear separation (62.5%) between summer and winter isolates. These differences in the genetic structure may be explained by the variety of eco-geography over the sampled areas of B. bassiana isolates. This information on genetic variation among summer and winter B. bassiana isolates is helpful in designing an effective integrated pest management program for Sunn pest.  相似文献   

9.
Anamorphic Beauveria are cosmopolitan entomopathogenic fungi that parasitize a broad range of insect species in virtually all terrestrial habitats. A diversity survey of 189 exemplar strains of Beauveria from the RCEF culture collection, representative of its taxonomic diversity, geographic distribution and insect host range in China, was conducted based on a combination of DGGE genotyping and nucleotide sequence analysis of the Bloc nuclear intergenic region. The DGGE assays detected 42 electrophoretically distinct haplotypes, with each haplogroup including 1–13 individuals. Nucleotide sequence analysis established that all haplogroups were uniquely distinguished by one or more nucleotide differences and that isolates from the same DGGE haplogroup share sequence identity. A phylogenetic analysis inclusive of this Bloc haplotype diversity assigned the Chinese Beauveria strains to six species lineages corresponding to B. bassiana sensu lato. (Bals.) Vuill, B. brongniartii (Sacc.) Petch, B. australis S.A. Rehner & Humber, B. asiatica S.A. Rehner & Humber, B. pseudobassiana S.A. Rehner & Humber and B. caledonica Bissett & Widden. B. australis is reported for the first time in China. This study represents the first phylogenetic survey of Beauveria species diversity in China, and demonstrates a simple and effective screening strategy to facilitate the identification of Beauveria genotypes.  相似文献   

10.
Inter-microsatellite PCR (ISSR-PCR) markers were used to identify and to examine the genetic diversity of eleven Beauveria bassiana isolates with different geographic origins. The variability and the phylogenetic relationships between the eleven strains were analyzed using 172 ISSR-PCR markers. A high level of polymorphism (near 80%) was found using these molecular markers. Seven different isolates showed exclusive bands, and ISSR primer 873 was able to distinguish between all the strains. The dendrogram obtained with these markers is robust and in agreement with the geographical origins of the strains. All the isolates from the Caribbean region were grouped together in a cluster, while the other isolates grouped in the other cluster. The similarity exhibited between the two clusters was less than 50%. This value of homology shows the high genetic variability detected between the isolates from the Caribbean region and the other isolates. ISSR-PCR markers provide a quick, reliable and highly informative system for DNA fingerprinting, and allowed the identification of the different B. bassiana isolates studied.  相似文献   

11.
The banana weevil Cosmopolites sordidus (Germar) is one of a number of pests that attack banana crops. The use of the entomopathogenic fungus Beauveria bassiana as a biological control agent for this pest may contribute towards reducing the application of chemical insecticides on banana crops. In this study, the genetic variability of a collection of Brazilian isolates of B. bassiana was evaluated. Samples were obtained from various geographic regions of Brazil, and from different hosts of the Curculionidae family. Based on the DNA fingerprints generated by RAPD and AFLP, we found that 92 and 88 % of the loci were polymorphic, respectively. The B. bassiana isolates were attributed to two genotypic clusters based on the RAPD data, and to three genotypic clusters, when analyzed with AFLP. The nucleotide sequences of nuclear ribosomal DNA intergenic spacers confirmed that all isolates are in fact B. bassiana. Analysis of molecular variance showed that variability among the isolates was not correlated with geographic origin or hosts. A RAPD-specific marker for isolate CG 1024, which is highly virulent to C. sordidus, was cloned and sequenced. Based on the sequences obtained, specific PCR primers BbasCG1024F (5′-TGC GGC TGA GGA GGA CT-3′) and BbasCG1024R (5′-TGC GGC TGA GTG TAG AAC-3′) were designed for detecting and monitoring this isolate in the field.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-012-0292-9) contains supplementary material, which is available to authorized users.  相似文献   

12.
Aim:  To examine whether isolates of the entomopathogenic fungus Beauveria bassiana are more closely associated to their summer hosts compared with overwintering hosts, with recently developed molecular tools based on mitochondrial regions. Methods and Results:  Primers for the traditional ITS1‐5·8S‐ITS2 region and two mitochondrial intergenic regions, namely, nad3‐atp9 and atp6‐rns, were used. All amplified products were sequenced, aligned and Neighbour‐Joining (NJ), parsimony and Bayesian phylogenetic inference analyses were performed. The isolates examined were grouped with very good support into three distinct groups, two of them showed geographical correlation, but no clear association to their host. Conclusions:  The mitochondrial intergenic regions used were more informative than the nuclear ITS1‐5·8S‐ITS2 sequences. The sequence variability observed, that allowed the phylogenetic placement of the isolates into distinct groups, depended on the geographical origin of the isolates and can be exploited for designing group‐specific and isolate‐specific primers for their genetic fingerprinting. No clear associations with summer Sunn Pest populations were observed. Significance and Impact of the Study:  Studies on the genetic variability of biocontrol agents like B. bassiana are indispensable for the development of molecular tools for their future monitoring.  相似文献   

13.
14.
Knowledge of the occurrence, distribution and diversity of pathogens of insects and arachnids (entomopathogens) in the Arctic is very limited. Climate change is expected to affect Arctic terrestrial arthropod communities and therefore also host–pathogen interactions, given that entomopathogens are present. We conducted a survey of fungal entomopathogens in soil samples collected at four localities in Greenland; two at low Arctic sites (Ritenbenk and Disko Island) and two at sites in the high Arctic (Zackenberg and Danmarkshavn). Fungi were isolated from soil samples using larvae of the insect species Galleria mellonella (Lepidoptera) and Tenebrio molitor (Coleoptera) as baits providing evidence that the fungal isolates were indeed entomopathogenic. Five fungal species (Ascomycota; Hypocreales) were found: Isaria fumosorosea Wize, Isaria farinosa (Holmsk.) Fr., Beauveria bassiana (Bals.) Vuill., Beauveria pseudobassiana Rehner and Humber and Tolypocladium inflatum W. Gams (syn.?=?T. niveum). I. farinosa was found at all four localities, while I. fumosorosea was detected in single samples at each of three localities including both high Arctic sites. Only the locality on Disko Island revealed B. bassiana, whereas B. pseudobassiana was isolated at the three other sites. T. inflatum was only found on Disko Island and only isolated with T. molitor as a bait insect. The results document that fungal entomopathogens are widely distributed in the soil environment in Greenland. Entomopathogens should therefore be included in future studies of arthropod ecology in the Arctic.  相似文献   

15.
Pleurotus spp. are well-known and economically important cultivated mushrooms in China. Knowledge of the genetic relationship between the Chinese cultivars is essential to the improvement of P. ostreatus strains. Sequence analysis of the internal transcribed spacers (ITS), translation elongation factor (EF1α) and the second largest subunit of RNA polymerase II (RPB2) was performed to assess the genetic diversity of Pleurotus ostreatus strains cultivated in China. The phylogenetic tree constructed using the combined results of the ITS, EF1α and RPB2 sequence analyses showed the genetic relationships between the studied strains. Our phylogenetic analyses therefore provided valuable information on the relationships among the P. ostreatus strains used in this study and that was useful for examining genetic diversity among these strains.  相似文献   

16.
DNA sequence analysis was used to characterize the nuclear ribosomal DNA ITS1 region and a portion of the COII and 16S rDNA genes of the mitochondrial genome from Steinernema entomopathogenic nematodes. Nuclear ITS1 nucleotide divergence among seven Steinernema spp. ranged from 6 to 22%, and mtDNA divergence among five species ranged from 12 to 20%. No intraspecific variation was observed among three S. feltiae strains. Phylogenetic analysis of both nuclear and mitochondrial DNA sequences confirms the existing morphological relationships of several Steinernema species. Both the rDNA ITS1 and mtDNA sequences were useful for resolving relationships among Steinernema taxa.  相似文献   

17.
The obligate marine actinobacterium Salinispora arenicola was successfully cultured from temperate sediments of the Pacific Ocean (Tosa Bay, offshore Kochi Prefecture, Japan) with the highest latitude of 33°N ever reported for this genus. Based on 16S rRNA gene sequence analysis, the Tosa Bay strains are of the same phylotype as the type strain S. arenicola NBRC105043. However, sequence analysis of their 16S-23S rRNA intergenic spacer (ITS) revealed novel sequence variations. In total, five new ITS sequences were discovered and further phylogenetic analyses using gyrase B and rifamycin ketosynthase (KS) domain sequences supported the phylogenetic diversity of the novel Salinispora isolates. Screening of secondary metabolite genes in these strains revealed the presence of KS1 domain sequences previously reported in S. arenicola strains isolated from the Sea of Cortez, the Bahamas and the Red Sea. Moreover, salinosporamide biosynthetic genes, which are highly homologous to those of Bahamas-endemic S. tropica, were detected in several Tosa Bay isolates, making this report the first detection of salinosporamide genes in S. arenicola. The results of this study provide evidence of a much wider geographical distribution and secondary metabolism diversity in this genus than previously projected.  相似文献   

18.
A set of five mitochondrial (mt) probes derived from a strain of Beauveria bassiana was used to evaluate the similarity of mtDNAs from 15 additional isolates of this fungus and five genera of other entomopathogenic fungi. The probes and genes encoded for (shown in parentheses) were pBbmtE2 (NADI, ATP6), pBbmtE3 (ATP6, small rRNA [srRNA]), pBbmtE4 (srRNA, CO3, NAD6), pBbSE1 (NAD6, tRNAVal, Ile, Ser, Trp, Pro, large rRNA [lrRNA]), and pBbXS1 (lrRNA). The probes produced identical hybridization patterns in EcoRI-digested DNA from nearly all isolates of B. bassiana and Beauveria caledonica. Similar patterns were also observed with Beauveria densa. The isolates of B. caledonica and B. densa DNAs could be differentiated from each other and from B. bassiana on the basis of a HindIII digestion and probing with pBbmtE3. Probe pBbmtE2 produced either a 5.0-kb or a 4.1-kb band in all of the B. bassiana isolates. This observation was used to categorize the mtDNA of B. bassiana into two types, designated A and B. Hybridization of the five probes produced distinct banding patterns in Beauveria brongniartii, Tolypocladium cylindrosporum, Tolypocladium nivea, Metarhizium anisopliae, Verticillium lecanii, and Paecilomyces farinosus. Hybridizations carried out with multiple probes simultaneously present produced unique patterns which characterized the B. bassiana group from all other fungi tested. These results are discussed in terms of how mtDNA polymorphisms in B. bassiana may relate to natural population structures, mt transmission in deuteromycetes, and the use of mtDNA polymorphisms in structural analysis of mtDNA.  相似文献   

19.
Beauveria bassiana: endophytic colonization and plant disease control   总被引:1,自引:0,他引:1  
Seed application of Beauveria bassiana 11-98 resulted in endophytic colonization of tomato and cotton seedlings and protection against plant pathogenic Rhizoctonia solani and Pythium myriotylum. Both pathogens cause damping off of seedlings and root rot of older plants. The degree of disease control achieved depended upon the population density of B. bassiana conidia on seed. Using standard plating techniques onto selective medium, endophytic 11-98 was recovered from surface-sterilized roots, stems, and leaves of tomato, cotton, and snap bean seedlings grown from seed treated with B. bassiana 11-98. As the rate of conidia applied to seed increased, the proportion of plant tissues from which B. bassiana 11-98 was recovered increased. For rapid detection of B. bassiana 11-98 in cotton tissues, we developed new ITS primers that produce a PCR product for B. bassiana 11-98, but not for cotton. In cotton samples containing DNA from B. bassiana11-98, the fungus was detected at DNA ratios of 1:1000; B. bassiana 11-98 was detected also in seedlings grown from seed treated with B. bassiana 11-98. Using SEM, hyphae of B. bassiana11-98 were observed penetrating epithelial cells of cotton and ramifying through palisade parenchyma and mesophyll leaf tissues. B. bassiana11-98 induced systemic resistance in cotton against Xanthomonas axonopodis pv. malvacearum (bacterial blight). In parasitism assays, hyphae of B. bassiana 11-98 were observed coiling around hyphae of Pythium myriotylum.  相似文献   

20.
The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these endophytes for the biological control of aphids and other herbivores under greenhouse and field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号