首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa.

Results

Three levels of photosynthetic activity were detected: (1) no functional retention; (2) short-term retention lasting about one week; and (3) long-term retention for over a month. Phylogenetic analysis of one nuclear and two mitochondrial loci revealed reciprocal monophyly of the shelled Oxynoacea and shell-less Plakobranchacea, the latter comprising a monophyletic Plakobranchoidea and paraphyletic Limapontioidea. Only species in the Plakobranchoidea expressed short- or long-term kleptoplasty, most belonging to a speciose clade of slugs bearing parapodia (lateral flaps covering the dorsum). Bayesian ancestral character state reconstructions indicated that functional short-term retention arose once in the last common ancestor of Plakobranchoidea, and independently evolved into long-term retention in four derived species.

Conclusion

We propose a sequential progression from short- to long-term kleptoplasty, with different adaptations involved in each step. Short-term kleptoplasty likely arose as a deficiency in plastid digestion, yielding additional energy via the release of fixed carbon. Functional short-term retention was an apomorphy of the Plakobranchoidea, but the subsequent evolution of parapodia enabled slugs to protect kleptoplasts against high irradiance and further prolong plastid survival. We conclude that functional short-term retention was necessary but not sufficient for an adaptive radiation in the Plakobranchoidea, especially in the genus Elysia which comprises a third of all sacoglossan species. The adaptations necessary for long-term chloroplast survival arose independently in species feeding on different algal hosts, providing a valuable study system for examining the parallel evolution of this unique trophic strategy.  相似文献   

2.
Solar-powered sea slugs (Sacoglossa: Gastropoda) have long captured the attention of laymen and scientists alike due to their remarkable ability to steal functional chloroplasts from their algal food, enslaving them to withstand long starvation periods. Recently, a wealth of data has shed insight into this remarkable relationship; however, the cellular mechanisms governing this process are still completely unknown. This study explores these mechanisms, providing insight into the chloroplast retention and delayed digestion, occurring within the slug’s digestive gland. We examine the relationships between functional chloroplast and lysosome abundances during starvation, in live material, for the long-term retaining species Elysia timida, the ambiguous long/short-term retaining Elysia viridis, and the short-term retaining Thuridilla hopei, to elucidate digestive differences that contribute to the development of functional kleptoplasty. Functional chloroplast and lysosome abundance are measured using chlorophyll a autofluorescence and the pH-dependent stain acridine orange. In each species, the number of chloroplasts and lysosomes is indirectly proportional, with the plastid density decreasing when starvation begins. We also present a new FIJI/Image J Plugin, the 3D—Accounting and Measuring Plugin, 3D-AMP, which enables the reliable analysis of large image sets.  相似文献   

3.
Long-term kleptoplasty, the capability to retain functional stolen chloroplasts (kleptoplasts) for several weeks to months, has been shown in a handful of Sacoglossa sea slugs. One of these sea slugs is Elysia timida, endemic to the Mediterranean, which retains functional chloroplasts of the macroalga Acetabularia acetabulum. To understand how light modulates the lipidome of E. timida, sea slug specimens were subjected to two different 4-week light treatments: regular light and quasi-dark conditions. Lipidomic analyses were performed by HILIC-HR-ESI-MS and MS/MS. Quasi-dark conditions caused a reduction in the amount of essential lipids for photosynthetic membranes, such as glycolipids, indicating high level of kleptoplast degradation under sub-optimal light conditions. However, maximum photosynthetic capacities (Fv/Fm) were identical in both light treatments (≈0.75), showing similar kleptoplast functionality and suggesting that older kleptoplasts were targeted for degradation. Although more stable, the phospholipidome showed differences between light treatments: the amount of certain lipid species of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylglycerol (PG) decreased under quasi-dark conditions, while other lipid species of phosphatidylcholine (PC), PE and lyso-PE (LPE) increased. Quasi-dark conditions promoted a decrease in the relative abundance of polyunsaturated fatty acids. These results suggest a light-driven remodelling of the lipidome according to the functions of the different lipids and highlight the plasticity of polar lipids in the photosynthetic sea slug E. timida.  相似文献   

4.
Photosynthesis is a fundamental process sustaining heterotrophic organisms at all trophic levels. Some mixotrophs can retain functional chloroplasts from food (kleptoplasty), and it is hypothesized that carbon acquired through kleptoplasty may enhance trophic energy transfer through increased host growth efficiency. Sacoglossan sea slugs are the only known metazoans capable of kleptoplasty, but the relative fitness contributions of heterotrophy through grazing, and phototrophy via kleptoplasts, are not well understood. Fitness benefits (i.e. increased survival or growth) of kleptoplasty in sacoglossans are commonly studied in ecologically unrealistic conditions under extended periods of complete darkness and/or starvation. We compared the growth efficiency of the sacoglossan Elysia viridis with access to algal diets providing kleptoplasts of differing functionality under ecologically relevant light conditions. Individuals fed Codium fragile, which provide highly functional kleptoplasts, nearly doubled their growth efficiency under high compared to low light. In contrast, individuals fed Cladophora rupestris, which provided kleptoplasts of limited functionality, showed no difference in growth efficiency between light treatments. Slugs feeding on Codium, but not on Cladophora, showed higher relative electron transport rates (rETR) in high compared to low light. Furthermore, there were no differences in the consumption rates of the slugs between different light treatments, and only small differences in nutritional traits of algal diets, indicating that the increased growth efficiency of E. viridis feeding on Codium was due to retention of functional kleptoplasts. Our results show that functional kleptoplasts from Codium can provide sacoglossan sea slugs with fitness advantages through photosynthesis.  相似文献   

5.
The phenomenon of the uptake, intracellular sequestration, and subsequent usage of algal chloroplasts by the digestive cells of many species of sacoglossan sea slugs, currently called kleptoplasty, has been of considerable interest since its discovery in the 1960s. While a large body of literature reported that captured chloroplasts were photosynthetically active inside slug cells and that plastid longevity in some species might be the result of the horizontal transfer of functional algal nuclear genes into the slug genome, a few recent studies have called the older results into question. Here, we have reviewed the literature and showed that while kleptoplasty occurs in many slug species and almost all derive benefit from kleptoplast photosynthesis, the slug adaptations to maintain the chloroplasts differ from species to species. These adaptations range from behavioral to molecular, including gene transfer, in a variety of combinations.  相似文献   

6.
The kleptoplastic sacoglossan Elysia chlorotica shares a requisite, intracellular symbiosis with the plastids (= chloroplasts) of the Xanthophyte alga Vaucheria litorea. Although wild specimens have been used to address a range of biological questions, no studies have thoroughly characterized animal development during the initial establishment of the symbiosis under controlled laboratory conditions. Laboratory culture conditions were modified and the time required for successful metamorphosis was reduced by 40 % relative to previous work. Plastids were not initially stable within the host; “permanent kleptoplasty” was obtained only after ≥7 days of feeding on V. litorea. Feeding for shorter time periods resulted in the loss of plastids and abnormal development; this phase was characterized as “transient kleptoplasty”. Individuals in the transient state exhibited a significantly greater decrease in length compared to animals with permanent kleptoplasts after the same starvation period. To test the effect of food availability after obtaining permanent kleptoplasty, animals were subjected to various dietary regimes followed by a recovery period of constant feeding. Thirty percent of animals survived prolonged starvation (>4 weeks) after only the initial week of feeding required to establish permanent kleptoplasty. All treatments showed rapid growth when re-exposed to Vaucheria. Thus, during initial development E. chlorotica experiences enhanced fitness when Vaucheria is available for consumption. However, the animal rapidly establishes permanent kleptoplasty, which bestows flexible food requirements and resistance to food limitation, a likely advantage for E. chlorotica in salt marsh environments where Vaucheria sp. abundance is sporadic.  相似文献   

7.
The establishment of kleptoplasty (retention of “stolen plastids”) in the digestive tissue of the sacoglossan Elysia chlorotica Gould was investigated using transmission electron microscopy. Cellular processes occurring during the initial exposure to plastids were observed in laboratory raised animals ranging from 1–14 days post metamorphosis (dpm). These observations revealed an abundance of lipid droplets (LDs) correlating to plastid abundance. Starvation of animals resulted in LD and plastid decay in animals <5 dpm that had not yet achieved permanent kleptoplasty. Animals allowed to feed on algal prey (Vaucheria litorea C. Agardh) for 7 d or greater retained stable plastids resistant to cellular breakdown. Lipid analysis of algal and animal samples supports that these accumulating LDs may be of plastid origin, as the often algal-derived 20∶5 eicosapentaenoic acid was found in high abundance in the animal tissue. Subsequent culturing of animals in dark conditions revealed a reduced ability to establish permanent kleptoplasty in the absence of photosynthetic processes, coupled with increased mortality. Together, these data support an important role of photosynthetic lipid production in establishing and stabilizing this unique animal kleptoplasty.  相似文献   

8.
9.
Using 454 pyrosequencing data, 24 polymorphic microsatellite markers were identified for the grey side-gilled sea slug, Pleurobranchaea maculata. The grey side-gilled sea slug is found throughout the western and south Pacific and is known to contain high concentrations of tetrodotoxin. Polymorphism was assessed in 20 individuals obtained from geographically distinct locations within New Zealand. Between 2 and 15 alleles were identified at each locus. The observed heterozygosity (Ho) and expected heterozygosity (He) ranged from 0.10 to 1 and 0.10–0.94, respectively. No significant linkage disequilibrium between pairs of loci or deviations from the Hardy–Weinberg proportions were observed. The markers are central to understanding the population biology and genetic structure of P. maculata.  相似文献   

10.
The acquisition of endosymbiotic alphaproteobacteria that gave rise to mitochondria was one of the key events in the origin of eukaryotic cell. To reconstruct this process, it is important to analyze relationships that developed later between eukaryotes and other alphaproteobacteria. Wolbachia pipientis, a bacterium that inhabits cells of numerous terrestrial invertebrates and exerts diverse effects on its hosts, is used as a model. Although Wolbachia is similar to mitochondria in many important features (basic metabolism, small molecule membrane transport, envelope structure, etc.), their relationships with the nucleocytoplasm are different. Mitochondria import most of their required proteins from the nucleocytoplasm and are controlled by the nucleocytoplasmic regulatory systems. On the contrary, Wolbachia exports its proteins into the host’s cytoplasm, thus causing dramatic aberrations in the ontogeny and reproduction of the host. This difference may be due to the fact that most of the protomitochondrial genes had been transferred into the central (nuclear) genome at the early stages of the development of the endosymbiotic system, while Wolbachia genes were not transferred into the nucleus. This fits well with the previously suggested hypothesis that there was a period of rapid lateral gene transfer in the evolution of proto-eukaryotes; the acquisition of mitochondria took place during this period. Later, eukaryotes, and especially metazoans, developed powerful mechanisms for prevention of lateral gene transfer. Therefore, the genes of the newly acquired endosymbionts cannot be transferred into the central genome, and the endosymbionts retain the capacity for selfish evolution.  相似文献   

11.
Herbivory through gastropods has among others been proposed as a potential factor responsible for the river corridor distribution of plant species, which is a well known but poorly understood ecological pattern. Since floodplains are characterised by seasonally changing abiotic conditions, viz. floods during winter and spring and severe summer drought that are unsuitable for gastropods they may present safe habitats for highly palatable plant species.In the present study we compared species composition of gastropods and vegetation of twelve grassland sites situated within three floodplain compartments along the Upper Rhine. Additionally, we studied the palatability of 7 days and 25 days old seedlings of five typical floodplain plant species and five mesic grassland species to the slug Deroceras reticulatum in laboratory experiments.Our results showed that both vegetation and gastropod community composition but not gastropod diversity and abundance differed between floodplain compartments. Owing to omnivory of most gastropods the similarity structure of sites based on plants and gastropods was not significantly correlated. In general, slug herbivory significantly reduced survival and biomass of 7 days old seedlings, but responses were species-specific. In contrast, with the exception of Arabis nemorensis, Viola pumila and Taraxacum sect. Ruderalia biomass of 25 days old seedlings was not significantly affected by slug herbivory. Although the response of floodplain plant species as a group to slug herbivory did not differ from common grassland species, our results suggest that gastropods may potentially influence the distribution pattern of the highly palatable river corridor species Arabis nemorensis and Viola pumila. However, further research is needed to estimate the damage to river corridor plants through gastropod herbivory and its effect on competitive relationships under natural conditions.  相似文献   

12.
Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO(2) fixation for at least 9 months if provided with only light and a source of CO(2). Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.  相似文献   

13.
Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans.  相似文献   

14.
In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12–15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity.  相似文献   

15.
Acantharia (Radiolaria) are widespread and abundant heterotrophic marine protists, some of which can host endosymbiotic eukaryotic microalgae. Although this photosymbiotic association was first described at the end of the 19th century, the diversity of the symbiotic microalgae remains poorly characterized. Here, we examined the identity of the microalgae associated with the acantharian species Acanthochiasma sp. by sequencing partial 18S and internal transcribed spacer (ITS) ribosomal DNA genes from cultured symbionts and directly from isolated holobiont specimens. Single Acanthochiasma cells contained multiple symbiotic partners, including distantly related dinoflagellates (Heterocapsa sp., Pelagodinium sp., Azadinium sp. and Scrippsiella sp.) as well as a haptophyte (Chrysochromulina sp.). This original association of multiple symbiotic microalgae within a single host cell raises questions about the specificity and functioning of the relationship. These microalgae exhibit the common ecological feature of being abundant and widely distributed in coastal and oceanic waters, some occasionally forming extensive blooms. Some of the microalgal genera found in association with Acanthochiasma (i.e. Pelagodinium and Chrysochromulina) are known to occur in symbiosis with other heterotrophic protists such as Foraminifera and other Radiolaria, whereas Heterocapsa, Scrippsiella and Azadinium have never previously been reported to be involved in putative symbiotic relationships. The unusual association unveiled in this study contributes to our understanding of the ecological and evolutionary significance of photosymbiosis in Acantharia and also provides new insights into the nature of such partnerships in the planktonic realm.  相似文献   

16.
Photoprotection mechanisms protect photosynthetic organisms, especially under stress conditions, against photodamage that may inhibit photosynthesis. We investigated the effects of short-term immersion in hypo- and hypersalinity sea water on the photosynthesis and xanthophyll cycle in Sargassum fusiforme (Harvey) Setchell. The results indicated that under moderate light [110 μmol(photon) m?2 s?1], the effective quantum yield of PSII was not reduced in S. fusiforme fronds after 1 h in hyposalinity conditions, even in fresh water, but it was significantly affected by extreme hypersalinity treatment (90‰ sea water). Under high light [HL, 800 μmol(photon) m?2 s?1], photoprotective mechanisms operated efficiently in fronds immersed in fresh water as indicated by high reversible nonphotochemical quenching of chlorophyll fluorescence (NPQ) and de-epoxidation state; the quantum yield of PSII recovered during the subsequent relaxation period. In contrast, fronds immersed in 90‰ sea water did not withstand HL, barely developed reversible NPQ, and accumulated little antheraxanthin and zeaxanthin during HL, while recovery of the quantum yield of PSII was severely inhibited during the subsequent relaxation period. The data provided concrete evidence supporting the short-term tolerance of S. fusiforme to immersion in fresh water compared to hypersalinity conditions. The potential practical implications of these results were also discussed.  相似文献   

17.
18.
19.
20.
Phenol is an organic compound widely used as a solvent. It is discharged by various industries into rivers and then accumulates in lakes and seawater. It is difficult to treat phenol in seawater by biological means because the high concentrations of dissolved mineral salts in seawater inhibit the growth of most microorganisms. We investigated the bioremediation of phenol in seawater using a novel microorganism isolated from the intestine of a marine slug. A novel bacterium was isolated from the intestine of the sea slug (Aplysia kurodai) using enrichment culture with a high concentration of phenol. From experimental research on the bacterium's morphological, and chemotaxonomic characteristics, and using molecular (16S rDNA) techniques, it was found that it belongs to the genus Serratia. Serratia sp. could degrade phenol completely; this is in contrast to activated sludge, which degraded only about 35% of phenol in seawater. This novel microorganism seems to have the potential for the efficient treatment of organic pollutants in seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号