首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 6 Chinese yak (Bos. Grunniens) populations including 177 yaks, 34 blood protein loci were studied by horizontal starch gel electrophoresis, four of these loci (AKP, ALB, LDH-1, TF) were found to be polymorphic. The percentage of polymorphic loci(P) is 0.118, the mean individual heterozygosity(H) is 0.015, which means a low level of genetic diversity in the whole Chinese yak population. The coefficient of gene differentiation (G ST ) is 0.0625, which indicated an almost-indistinguishable divergence among different populations at the level of blood protein electrophoresis.  相似文献   

2.
Thirty‐four polymorphic dinucleotide microsatellite loci were developed in the Malayan pangolin Manis javanica. Of the 34 markers, 32 and 18 were also amplified, respectively, in the Chinese pangolin (Manis pentadactyla) and the African tree pangolin (Manis tricuspis). Analysis of 24 Malayan, 12 Chinese and 2 African tree pangolins showed high levels of variability (heterozygosity ranging from 0.321 to 0.708). These are the first available microsatellite markers in Pholidota and will be an invaluable tool for evolutionary and conservation genetic studies in pangolins.  相似文献   

3.
Two different forms of Chinese pangolins can be recognized according to the color of their scales, i.e., brown and dusky. We analyzed mitochondrial DNA (mtDNA) purified from the livers of seven dusky and six brown Chinese pangolins from the same locality, using cleavage patterns from 19 restriction enzymes. From the 19 6-bp recognition enzymes used, 51–56 sites were observed. By combining the cleavage patterns for each enzyme, the 13 samples were classified into four restriction types: two in dusky and two in brown Chinese pangolins. The estimated number of nucleotide substitutions per site in dusky and brown types is 0.002, and that between dusky and brown types is 0.012. Divergence between brown and dusky forms began 0.6 Myr ago, provided the mean rate of sequence divergence is 0.02 per Myr in mtDNA. Our results suggest that there is considerable divergence in Chinese pangolins, and brown and dusky Chinese pangolins may be quite different forms or, at least, belong to different maternal groups.  相似文献   

4.
Genetic differentiation among 14 populations representing all Egyptian dipodid (jerboa) species and subspecies was examined at 25 structural loci and interspecific relationships are discussed. Of the 25 loci, only 3 were monomorphic, with the same allele fixed in all taxa, 9 loci were monomorphic, but demonstrated intertaxon variation, and only 13 loci were polymorphic. The overall mean number of alleles per locus (A) was 1.23 ± 0.02 and the average percentage of polymorphic loci per taxon (P) was 23%. The overall mean of observed heterozygosity (H o) was found significantly higher than that of expected heterozygosity (He); the overall means per taxon were 0.25 ± 0.017 and 0.085 ± 0.007. Mean levels of genetic identity (I) were 0.970 ± 0.003 among geographic populations, 0.718 ± 0.022 between subspecies, 0.590 ± 0.030 between congeneric species, and 0.368 ± 0.020 between genera. Phenetic analysis of genetic distance matrix produced a phenogram indicating a close association ofJaculus orientalis Erxleben, 1777 toJaculus jaculus (Linnaeus, 1758), particularly to its subspeciesJaculus jaculus butleri (Thomas, 1922), and indicating a distinct affinity between these latter two species andAllactaga tetradactyla (Lichtenstein, 1823). Estimates of genetic divergence demonstrated that J. orientalis appears to have shared a more recent common ancestor withJ. jaculus thanA. tetradactyla. Divergence of these species would have occurred by Miocene (ca 9.6 to 18.7 million years ago). The pattern of relationships of the dipodid species indicated in this study was closely consistent with the hypotheses derived from morphological and chromosomal data.  相似文献   

5.
Seven isozyme systems (Sod, 6-Pgd, Me, Est, Skdh, Fdh and Gdh) representing nine loci were used to study the genetic diversity of nine faba bean populations. Seven loci revealed polymorphic bands and showed the same quaternary structure as that found in several species. They revealed a high number of phenotypes. Indeed, from 3 to 9 phenotypes per locus were investigated in this study. The percentage of polymorphic loci (P = 59.3 %) was higher than that mentioned in the autogamous species (P = 20.3 %) and less than the optimum (P=96 %) indicated for allogamous plants. Total genetic diversity (H T) and within population genetic diversity (H S) were estimated with the isozyme markers. The contribution of among population genetic diversity (D ST) to total genetic diversity was 22%. Enzyme markers pointed out an average inbreeding level for whole population (F IT) and within population (F IS). Within population genetic diversity represents 78% of total diversity. Intra-population genetic diversity (H S = 0.206) was ranged with the respect of allogamous species and was clearly higher than that of among population genetic diversity (D ST = 0.057) indicating an out-crossing predominance in the studied populations. The expected heterozygosity was higher than that observed heterozygosity at the allogamous species was confirmed in this study. Although, the mean estimated gene flow was less than 1(Nm=0.814), the dendrogram based on Nei’s genetic distance of the 9 populations using UPGMA method showed some genetic drift between populations.  相似文献   

6.
The complete mitochondrial genome of the brown brocket deer Mazama gouazoubira and a set of polymorphic microsatellite markers were identified by 454-pyrosequencing. De novo genome assembly recovered 98% of the mitochondrial genome with a mean coverage of 9-fold. The mitogenome consisted of 16,356 base pairs that included 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and the control region, as found in other deer. The genetic divergence between the mitogenome described here and a previously published report was ∼0.5%, with the control region and ND5 gene showing the highest intraspecific variation. Seven polymorphic loci were characterized using 15 unrelated individuals; there was moderate genetic variation across most loci (mean of 5.6 alleles/locus, mean expected heterozygosity = 0.70), with only one locus deviating significantly from Hardy-Weinberg equilibrium, probably because of null alleles. Marker independence was confirmed with tests for linkage disequilibrium. The genetic variation of the mitogenome and characterization of microsatellite markers will provide useful tools for assessing the phylogeography and population genetic patterns in M. gouazoubira, particularly in the context of habitat fragmentation in South America.  相似文献   

7.
The population structure of 147 marsh deer (Blastocerus dichotomus) from three areas in the Paraná River basin, Brazil, was studied by observing protein polymorphism at 17 loci. Six loci were polymorphic and 11 monomorphic. The proportion of polymorphic loci (P) was 35.29% and the average heterozygosity (H) was 6.31%. Wright's FST indicated that only 4.9% of the total variation in allelic frequencies was due to genetic differences between the three groups. The high value of FIS (0.246) indicated inbreeding in the marsh deer. Genetic distance values (D = 0.014–0.051) showed little divergence between the three areas. We suggest that probable mechanisms accounting for the genetic structure are female phylopatry and polygyny and also that inbreeding has resulted from decreasing areas of wetland leading to isolation, overhunting, and diseases transmitted by cattle.  相似文献   

8.
Vitex rotundifolia L.f. is a woody perennial and has sexual and asexual modes of reproduction. Allozyme study was conducted on 550 plants in 13 Korean populations. The levels of genetic variability and divergence within and among populations, respectively, are considerably lower and higher than the mean values for woody plants with similar life history tralts. Mean percentage of polymorphic loci (P P), mean number of alleles per locus (A P), and mean genetic diversity (He P) within populations ofV. rotundifolia were: 16.7%, 1.21, and 0.047. On average, about 79% of the total variation inV. rotundifolia was common to all populations (meanG ST=0.208). In addition, significant differences in allele frequencies among populations were found in all polymorphic loci examined (P<0.001). On the other hand, levels of genotypic diversity within and among populations were moderate. About 44% (18/41) of multilocus genotypes were “local genotypes” (genotypes occurring in only one population), whereas only one “widespread genotype” (genotypes occurring in more than 75% of the populations) were detected. The mean number of multilocus genotypes per population (G) and mean genotypic diversity index (D G) were 8.4 and 0.74, respectively. Most common multilocus genotypes found in populations were homozygous for five polymorphic loci. The abundance of ramets of these genets is responsible for the low levels of expected heterozygosity within populations. The results indicate that clonal reproduction may act as an enhancer of genetic drift by reducing effective size of local populations ofV. rotundifolia.  相似文献   

9.
The genetic structure of nine Peromyscus maniculatus nebrascensis demes from southeastern Wyoming was determined by analyzing allozymes encoded by 23 genetic loci with polyacrylamide gel electrophoresis. Genetic variability is extremely high for two genetic parameters; the proportion of loci heterozygous per individual averaged 0.16, and the proportion of loci polymorphic per deme averaged 0.41. Previous estimates of genetic heterozygosity for species within the genus Peromyscus have a mean of 0.06. The results of the present study suggest that genetic heterozygosity is considerably higher within P. maniculatus demes than within demes of other species in the genus. Geographic range is correlated with heterozygosity among Peromyscus species, as is adaptive divergence into broad-niched species. These correlates suggest that high heterozygosity may reflect an adaptation to a variable environment.  相似文献   

10.
The Chinese soft-shelled turtle (Pelodiscus sinensis) is one of the most important economical chelonians in the world. To understand the genetic variations of the Chinese soft-shelled turtle in China, 62 individuals were sampled from three localities and 18 polymorphic microsatellite loci tested were used to detect genetic diversity and population structure. Results showed that the genetic diversity of the wild P. sinensis was high. Except for the Wuhu populations, the majority of microsatellite loci are not deviation from Hardy–Weinberg equilibrium in the other two populations. AMOVA analysis indicated that genetic variations occurred mainly within populations (97.4%) rather than among populations (2.6%). The gene flow estimates (Nm) among three geographic populations demonstrated that strong gene flow existed (Nm > 1, mean 6). The present study supported that different habitats, breed turtles escaped, multiple paternity and long evolutionary history may be responsible for the current genetic diversity and differentiation in the wild Chinese soft-shelled turtle.  相似文献   

11.
This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θO) ranged from 0.00 to 0.15, with a mean of 0.08. The θO values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θO = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04–0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates.  相似文献   

12.
The genetic diversity among spawning groups of herring from different parts of the White Sea was assessed using ten microsatellite loci. All loci were polymorphic with the expected heterozygosity estimates varying in the range of 12.7–94.1% (mean was 59.5%). The degree of genetic differentiation displayed by White Sea herring was statistically significant (θ = 2.03%). The level of pairwise genetic differentiation F ST was 0–0.085, and it was statistically significant in most of the comparison pairs between the herring samples. A hierarchical analysis of molecular variance (AMOVA) revealed the statistically significant differentiation of White Sea herring. 96.59% genetic variation was found within the samples and 3.41% variation was found among the populations. The main component of interpopulation diversity (1.85%) falls at the differences between two ecological forms of herring, spring- and summer-spawning. Within the spring-spawning form, the presence of local stocks in Kandalaksha Bay, Onega Bay, and Dvina Bay was demonstrated.  相似文献   

13.
The study focuses on geographical patterns of genetic variation at allozyme loci common for four main tree species of Central Europe (Norway spruce, silver fir, common beech and sessile oak). Moving-window averaging of four indicators of allelic richness and diversity (proportion of polymorphic loci, mean number of alleles per locus, effective number of alleles and expected heterozygosity) with window size of 50 × 50 km was used to identify the patterns. Moreover, local genetic divergence was assessed using the G ST (Nei, Molecular population genetic and evolution, Amsterdam and Oxford, North-Holland, 1975) and D j (Gregorius and Roberds, Theor Appl Genet 71:826–834, 1986) statistics for common beech and silver fir, where raw genotype data were available. Spatial patterns of diversity and allelic richness were quite similar. Romanian Carpathians were identified as the most important hotspot of genetic diversity and evolutionary divergence in Central Europe. Implications for genetic conservation are briefly discussed.  相似文献   

14.
We examined genetic diversity in populations of Dictamnus gymnostylis Stev., a rare species growing in the Bashkir Cis-Urals, based on the analysis of 8 gene-enzyme systems and detected a fairly high level of intraspecific genetic diversity and population differentiation. We determined the average number of alleles per locus (A) as 1.57; the portion of polymorphic loci (P 95) as 0.508; the observed heterozygosity (H o) as 0.139; and the expected heterozygosity (H e) as 0.169. Of the total genetic diversity, 88.3% stems from variability within populations, and 11.7% is due to variation among populations. The average value for the Nei’s genetic distance (D) constituted 0.028.  相似文献   

15.
Castilleja levisecta (Scrophulariaceae), the golden paintbrush, is an insect-pollinated herbaceaous perennial found in the Pacific Northwest. Currently restricted to two island populations off British Columbia and nine populations (eight on islands) in Washington, C. levisecta is a rare species threatened with extinction. Allozymes were used to describe genetic diversity and structure in these eleven populations. Despite its threatened status and small geographic range, exceptionally high levels of genetic diversity are maintained within C. levisecta. All sixteen of the loci resolved were polymorphic within the species (Ps=100%), while the mean percentage of loci polymorphic within populations (Pp) was 65.7%. The mean number of alleles per polymorphic locus (APs) was 2.94 within the species and averaged 2.38 within populations (APp). Genetic diversity (Hes) was 0.285 for the species, whereas mean population genetic diversity (Hep) was 0.213. Smaller populations had, on average, fewer observed alleles and less genetic diversity. A significant negative correlation (r = –0.72) was found between genetic identity and geographic distance, indicating reduced gene flow between distant populations. The most geographically isolated population was one of the larger populations, one of the most genetically diverse and the most genetically divergent. A wide range of pairwise population genetic identities (I = 0.771 – 0.992) was found, indicating considerable genetic divergence between some populations. Overall, 19% of the total genetic diversity was distributed among populations. Results of this survey indicate that genetic augmentation of existing populations is unnecessary. The high allelic diversity found for the species and within its populations holds promise for conservation and restoration efforts to save this rare and threatened plant species.  相似文献   

16.
运用16种酶蛋白编码的23个遗传座位对突尼斯非洲跳鼠(Jaculus jaculus)和埃及跳鼠(J. orientalis)自然群体的遗传变异和分化进行了电泳分析。结果表明,与其他啮齿动物等哺乳动物的相关数据比较,发现这两个种群体的遗传变异水平较低。非洲跳鼠群体的观测杂合度 (Hobs) 为0.08—0.19,多态座位百分比(P)为26.2%—45.2%,每个座位的平均等位基因数(A)为1.1—1.4;埃及跳鼠的Hobs为0.10—0.15,P为29.3%—44.1%,A为1.1—1.7。两个种群体各自的遗传分化程度较低(非洲跳鼠和埃及跳鼠的Fst分别为0.0017和0.0019)。而两个种群体间的Fst为0.607(P<0.05),表明两个种之间高度的遗传分化。本研究支持这两个种分类地位的合法性,并强调了地理因素(环境类型和生物气候阶段)对两个种遗传结构的影响。  相似文献   

17.
18.
Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H O) and expected (H E) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy–Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.  相似文献   

19.
Determining the genetic structure is essential for developing conservation and stock improvement plans. Four dinucleotide microsatellite loci were analysed to reveal population genetic structure of the Indian major carp,Labeo rohita collected from three major rivers namely the Halda, the Jamuna, and the Padma in Bangladesh. The four loci were polymorphic (P 95) in all the populations. The populations varied in the number and frequencies of alleles as well as heterozygosities in the loci analyzed. Population differentiation (F ST) value between the Halda and the Jamuna population was significant (P<0.05). Relatively high level of gene flow and low level ofF ST values were found between the Padma and the Jamuna population. The unweighted pair group method with averages (UPGMA) dendrogram based on genetic distance resulted in two clusters: the Halda population was alone in one cluster whereas the Jamuna and the Padma made another cluster. The results revealed a relatively low level of genetic variability in the river populations ofL. rohita in Bangladesh.  相似文献   

20.
The polymorphism of 13 microsatellite loci in 61 chickpea varieties from the National Center of Genetic Plant Resources of Ukraine was studied. Forty-seven alleles were detected. Three loci were monomorphic; the rest showed polymorphism. The genetic diversity of chickpea varieties in all loci was 0.41 according to the Nei polymorphism index (D). It was concluded that chickpea varieties from Europe had insignificant microsatellite loci diversity. The most polymorphic group included chickpea varieties from Russia (D = 0.38); the least polymorphic group, Spanish varieties (D = 0.25). A consensus tree representing the most credible divergence of Europe chickpea varieties was constructed. The possible reasons for clustering chickpea varieties in a common cluster are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号