首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Acute renal failure was induced in male rats by the subcutaneous injectioon of 4 mg HgC12 per kg body weight. Enzyme activities of the proximal tubule were studied histochemically at six time intervals from 15 min to 24 h. The enzyme studied were alkaline phosphatase, 5'-nucleotidase, acid phosphatase, alpha-glycerophosphate dehydrogenase (NAD-independent), malic dehydrogenase, succinic dehydrogenase, latic dehydrogenase, glucose-6-phosphate dehydrogenase and glucose-6-phosphatase. Decreases in activity were observed for alkaline phosphatase and 5'-nucleotidase after 15 min. Acid phosphatase was decreased after 30 min. These three enzymes returned to control levels after 3 h, but malic dehydrogenase and alpha-glycerophosphate dehydrogenase were decreased at this time interval. Succinic dehydrogenase was first decreased after 6 h. The earliest morphological changes detectable by light microscopy were observed in pars recta tubules in the medullary rays after 6 h, a time when all enzymes studied showed widespread decreased activity throughout the proximal tubule. After 24 h, the pars convoluta appeared morphologically normal but the pars recta was necrotic and exhibited calcification, whereas enzyme activity was decreased (absent in some cases) in both pars convoluta and pars recta. These results support the hypothesis that Hg++, when given in a sublethal dose, is associated with early histochemical changes in the brush border of the proximal tubule, which may be related to early changes in sodium reabsorption and to the subsequent development of acute renal failure. The observation that changes in plasma membrane-associated enzymes occur early and prior to alterations in enzymes of mitochondria and the endoplasmic reticulum suggests that Hg++ interacts initially with the plasma membrane.  相似文献   

2.
Rats were anesthetized and their lift kidneys were made ischemic for 1 h by clamping of the aorta just above the left renal artery. Mannitol (2.5 g/kg), Dextran 70 (0.6 g/kg), methylprednisolone (50 and 100 mg/kg), and allopurinol (100 mg/kg body weight) were administered before, during, or after the ischemia period in order to test the effect of each of these drugs upon this model of renal injury. At 24 h after the release of the aortic clamp the left kidneys of the drug treated animals wwere perfusion fixed and processed for light and electron microscopy. Dextran administration to animals with ischemic kidneys gave rise to a pronounced vacuolization ("osmotic nephrosis"), in the entire proximal tubule and especially in the pars recta. This was in contrast to dextran administration to rats with nonischemic kidenys, which showed no or very mild "osmotic nephrosis." This demonstrates that ischemia makes rat kidneys more susceptible to the development of "osmotic nephrosis." In controls (no drug treatment) one hour of renal ischemia gave partial necrosis of pars recta of the proximal tubule, while the pars convoluta tubule survived. Mannitol treatment significantly reduced the amount of necrosis of the pars recta, whereas dextran, methylprednisolone, and allopurinol had no or a negative effect on the survival of the cells of the pars recta segment. It is suggested that mannitol protects against the development of necrosis by increasing medullary blood flow in combination with a counteractive influence on the cellular swelling, which is known to occur in ischemia.  相似文献   

3.
The balance between angiotensin II (ANG II) and nitric oxide plays an important role in renal function and is thought to contribute to the progression of renal injury in experimental hypertension. In the present study, we investigated the extent of blood pressure (BP)-dependent and BP-independent pathways of renal injury following 2 wk of hypertension produced by intravenous infusion of ANG II (5 ng·kg?1·min?1)+N(ω)-nitro-l-arginine methyl ester (l-NAME; 1.4 μg·kg?1·min?1) in male Sprague-Dawley rats. An aortic balloon occluder was positioned between the renal arteries to maintain (24 h/day) BP to the left kidney (servo-controlled) at baseline levels, whereas the right kidney (uncontrolled) was chronically exposed to elevated BP. Over the 14-day experimental protocol, the average BP to uncontrolled kidneys (152.7 ± 1.8 mmHg) was significantly elevated compared with servo-controlled (113.0 ± 0.2 mmHg) kidneys and kidneys from sham rats (108.3 ± 0.1 mmHg). ANG II+l-NAME infusion led to renal injury that was focal in nature and mainly confined to the outer medulla. Despite the differences in BP between servo-controlled and uncontrolled kidneys, there was a similar ~3.5-fold increase in renal outer medullary tubular injury, ~2-fold increase in outer medullary interstitial fibrosis, ~2-fold increase in outer medullary macrophage infiltration, and a significant increase in renal oxidative stress, all of which are indicative of BP-independent mediated pathways. The results of this study have important implications regarding the pathogenesis of renal injury in various experimental models of hypertension and provide novel insights regarding the variable association observed between hypertension and renal injury in some human populations.  相似文献   

4.
Using light and electron microscope autoradiography in vivo, the localization of 125I-(Arg 101-Tyr 126) atrial natriuretic factor (ANF)-binding sites was studied in the renal medulla of rats. At the light microscopic level, the autoradiographic reaction was mainly distributed in patches in the outer medulla, and followed the tubular architecture in the innermost part of the inner medulla. At the electron microscopic level, binding sites were mainly found in the outer medullary descending vasa recta and inner medullary collecting ducts. These results suggest that, in rats, the renal medulla may participate in the natriuresis and diuresis produced by ANF through vascular and tubular effects; the former by changing medullary blood flow at the level of descending vasa recta and the latter by acting on electrolyte and water transport at the level of collecting ducts.  相似文献   

5.
Rhabdomyolysis-induced myoglobinuric acute renal failure accounts for about 10-40% of all cases of acute renal failure (ARF). Nitric oxide and reactive oxygen intermediates play a crucial role in the pathogenesis of myoglobinuric acute renal failure (ARF). This study was designed to investigate the effect of molsidomine and L-arginine in glycerol induced ARF in rats. Six groups of rats were employed in this study, group I served as control, group II was given 50% glycerol (8 ml/kg, intramuscularly), groups III and IV were given glycerol plus molsidomine (5 mg/kg, and 10 mg/kg p.o. route respectively) 60 min prior to the glycerol injection, group V animals were given glycerol plus L-arginine (125 mg/kg, p.o.) 60 min prior to the glycerol injection, and group VI received L-NAME (10 mg/kg, i.p.) along with glycerol 30 min prior to glycerol administration. Renal injury was assessed by measuring plasma creatinine, blood urea nitrogen, creatinine and urea clearance. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, reduced glutathione and superoxide dismutase. Tissue and urine nitrite levels were measured as an index of total nitric oxide levels. Glycerol treatment resulted in a marked decrease in tissue and urine nitric oxide levels, renal oxidative stress and significantly deranged the renal functions along with deterioration of renal morphology. Pre-treatment of animals with molsidomine (10 mg/kg) and L-arginine 60 min prior to glycerol injection markedly attenuated fall in nitric oxide levels, renal dysfunction, morphological alterations, reduced elevated TBARS and restored the depleted renal antioxidant enzymes. The animals treated with L-NAME along with glycerol further worsened the renal damage observed with glycerol. As a result, our results indicate that molsidomine and L-arginine may have beneficial effects in myoglobinuric ARF.  相似文献   

6.
Experiments were performed to determine whether L-arginine transport regulates nitric oxide (NO) production and hemodynamics in the renal medulla. The effects of renal medullary interstitial infusion of cationic amino acids, which compete with L-arginine for cellular uptake, on NO levels and blood flow in the medulla were examined in anesthetized rats. NO concentration in the renal inner medulla, measured with a microdialysis-oxyhemoglobin trapping technique, was significantly decreased by 26-44% and renal medullary blood flow, measured by laser Doppler flowmetry, was significantly reduced by 20-24% during the acute renal medullary interstitial infusion of L-ornithine, L-lysine, and L-homoarginine (1 micromol.kg(-1).min(-1) each; n = 6-8/group). In contrast, intramedullary infusion of L-arginine increased NO concentration and medullary blood flow. Flow cytometry experiments with 4-amino-5-methylamino-2',7'-difluorescein diacetate, a fluorophore reactive to intracellular NO, demonstrated that L-ornithine, L-lysine, and L-homoarginine decreased NO by 54-57% of control, whereas L-arginine increased NO by 21% in freshly isolated inner medullary cells (1 mmol/l each, n > 1,000 cells/experiment). The mRNA for the cationic amino acid transporter-1 was predominantly expressed in the inner medulla, and cationic amino acid transporter-1 protein was localized by immunohistochemistry to the collecting ducts and vasa recta in the inner medulla. These results suggest that L-arginine transport by cationic amino acid transport mechanisms is important in the production of NO and maintenance of blood flow in the renal medulla.  相似文献   

7.
目的:探讨重症蜂螫伤患者的肾脏病理改变,以指导临床针对性的治疗提供参考依据。方法:通过对4例重症蜂螫伤患者的临床表现及肾脏病理做病例报告,初步了解重症蜂螫伤患者的肾脏病理改变。记录所有患者的一般情况、实验室结果、治疗过程及预后,并进行肾穿刺活检以明确病理改变。结果:所有患者均为青壮年,均出现了MODS,包括急性肾衰竭、中毒性心肌炎及急性肝损伤。3例患者的肾组织病理为急性肾小管坏死及急性过敏性间质性肾炎,病理切片中可见少量嗜酸性粒细胞及大量淋巴细胞浸润。1例患者为急性肾小管坏死,未见嗜酸性粒细胞浸润。有急性过敏性间质性肾炎的患者使用小剂量激素反应较好,使用激素后肾功能恢复时间更短。结论:在重症蜂螫伤患者肾脏损伤的过程中,除了常见的急性肾小管坏死、血管内溶血、横纹肌溶解及休克等原因外,急性过敏性间质性肾炎也起着重要的作用,对于此类患者,及时使用激素治疗可能是减轻肾脏损伤、促进肾功能恢复的有效方法。  相似文献   

8.
The distribution and properties of the peptide-transport system in rabbit renal proximal tubule was examined with glycylsarcosine as the substrate and using brush-border-membrane vesicles derived from pars convoluta (outer cortex) and pars recta (outer medulla). The dipeptide was transported into these vesicles against a concentration gradient in the presence of an inward-directed H+ gradient, demonstrating the presence of a H+-coupled peptide-transport system in outer-cortical as well as outer-medullary brush-border membranes. Even though the transport was electrogenic and was energized by a H+ gradient in both membranes, the system was more active in outer medullary membranes than in outer cortical membranes. Kinetic analysis showed that, although the affinity of the transport system for glycylsarcosine was similar in both membrane preparations, the capacity of the system was significantly greater in outer medulla than in outer cortex. In addition, the pH profiles of the peptide-transport systems in these membrane preparations also showed dissimilarities. The greater dipeptide uptake in one membrane vis-à-vis the other may probably be due to the difference in the affinity of the transport system for H+ and/or the difference in peptide/H+ stoichiometry.  相似文献   

9.
The present study evaluated the effects of heme oxygenase-1 (HO-1) induction on the changes in renal outer medullary nitric oxide (NO) and peroxynitrite levels during 45-min renal ischemia and 30-min reperfusion in anesthetized rats. Glomerular filtration rate (GFR), outer medullary blood flow (OMBF), HO and nitric oxide synthase (NOS) isoform expression, and renal low-molecular-weight thiols (-SH) were also determined. During ischemia significant increases in NO levels and peroxynitrite signal were observed (from 832.1 +/- 129.3 to 2,928.6 +/- 502.0 nM and from 3.8 +/- 0.7 to 9.0 +/- 1.6 nA before and during ischemia, respectively) that dropped to preischemic levels during reperfusion. OMBF and -SH significantly decreased after 30 min of reperfusion. Twenty-four hours later, an acute renal failure was observed (GFR 923.0 +/- 66.0 and 253.6 +/- 55.3 microl.min(-1).g kidney wt(-1) in sham-operated and ischemic kidneys, respectively; P < 0.05). The induction of HO-1 (CoCl(2) 60 mg/kg sc, 24 h before ischemia) decreased basal NO concentration (99.7 +/- 41.0 nM), although endothelial and neuronal NOS expression were slightly increased. CoCl(2) administration also blunted the ischemic increase in NO and peroxynitrite (maximum values of 1,315.6 +/- 445.6 nM and 6.3 +/- 0.5 nA, respectively; P < 0.05), preserving postischemic OMBF and GFR (686.4 +/- 45.2 microl.min(-1).g kidney wt(-1)). These beneficial effects of CoCl(2) on ischemic acute renal failure seem to be due to HO-1 induction, because they were abolished by stannous mesoporphyrin, a HO inhibitor. In conclusion, HO-1 induction has a protective effect on ischemic renal failure that seems to be partially mediated by decreasing the excessive production of NO with the subsequent reduction in peroxynitrite formation observed during ischemia.  相似文献   

10.
Although acute renal failure, caused either by renal ischemia or nephrotoxic agents, is usually characterized by oliguria, a severe fall in glomerular filtration rate, and a fall in renal blood flow, some patients and experimental models display a non-oliguric pattern of renal injury. The present study was designed to evaluate the mechanism of preservation of high urinary flow rate under this condition. Following the administration of the aminoglycoside gentamicin to rats for five days, a decrease in concentrating ability was demonstrated, caused by impaired vasopressin-mediated water transport. Further treatment resulted in a fall in Cin to 15 percent of control, although RBF was reduced to only 67 percent of control, and urine flow rate rose above control levels. Induction of acute and renal failure with dichromate was associated with variable high or low urinary flow rates according to pre-injury intake of sodium. Urine volume correlated directly with cortical blood flow. These data suggest that the non-oliguric pattern of acute renal injury is caused by preservation of cortical perfusion in the setting of severe tubular injury.  相似文献   

11.
The vasculature of the mammalian renal medulla is complex, having neither discrete input nor output. There is also efficient countercurrent exchange between ascending and descending vasa recta in the vascular bundles. These considerations have hampered measurement of medullary blood flow since they impose pronounced constraints on methods used to assess flow. Three main strategies have been used: (i) indicator extraction; (ii) erythrocyte velocity tracking; and (iii) indicator dilution. These are discussed with respect to their assumptions, requirements, and limitations. There is a consensus that medullary blood flow is autoregulated, albeit over a narrower pressure range than is total renal blood flow. When normalized to gram tissue weight, medullary blood flow in the dog is similar to that in the rat, on the order of 1 to 1.5 mL X min-1 X g-1. This is considerably greater than estimated by the radioiodinated albumin uptake method which has severe conceptual and practical problems. From both theoretical and experimental evidence it seems that urinary concentrating ability is considerably less sensitive to changes in medullary blood flow than is often assumed.  相似文献   

12.
The acrosome in the sperm of the toad, Bufo bufo japonicus, consists of a membrane-limited acrosomal cap and a fibrous perforatorium. When sperm are incubated with the oviducal pars recta extract (PRE) for 30–60 min, the outer acrosomal membrane fuses with the overlying plasma membrane at several points with concomitant loss of the contents of the acrosomal cap. The inner acrosomal membrane thus exposed fuses with the plasma membrane at the caudal end of the acrosomal region. This PRE-induced acrosome reaction is completely inhibited by soybean trypsin inhibitor. Sperm found in the innermost jelly layer of inseminated eggs possess an intact acrosome, but those either passing through the vitelline coat or localizing in the perivitelline space are acrosome-reacted in the same manner as when treated with PRE. These observations, combined with recent evidence showing involvement of the pars recta substance in fertilization, indicate that the acrosome reaction occurring in a fertilizing sperm at or near the surface of the vitelline coat is a response to a substance that is derived from the pars recta and deposited in the vitelline coat.  相似文献   

13.

Background

In prolonged hemorrhagic shock, reductions in intestinal mucosal blood perfusion lead to mucosal barrier damage and systemic inflammation. Gastrointestinal failure in critically ill patients has a poor prognosis, so early assessment of mucosal barrier injury in shock patients is clinically relevant. Unfortunately, there is no serum marker that can accurately assess intestinal ischemia-reperfusion injury.

Objective

The aim of this study was to assess if serum diamine oxidase levels can reflect intestinal mucosal injury subsequent to prolonged hemorrhagic shock.

Methods

Thirty New Zealand white rabbits were divided into three groups: a control group, a medium blood pressure (BP) group (exsanguinated to a shock BP of 50 to 41 mm Hg), and a low BP group (exsanguinated to a shock blood pressure of 40 to 31 mm Hg), in which the shock BP was sustained for 180 min prior to fluid resuscitation.

Results

The severity of hemorrhagic shock in the low BP group was significantly greater than that of the medium BP group according to the post-resuscitation BP, serum tumor necrosis factor (TNF)-α, and arterial lactate. Intestinal damage was significantly more severe in the low BP group according to Chiu’s scoring, claudin-1, intercellular adhesion molecule (ICAM)-1, and myeloperoxidase expression. Serum diamine oxidase was significantly increased in the low BP group compared to the medium BP and control groups and was negatively correlated with shock BP.

Conclusion

Serum diamine oxidase can be used as a serological marker in evaluating intestinal injury and shows promise as an indicator of hemorrhagic shock severity.  相似文献   

14.
Summary New nephron anlages appear in the renal cortex up to the 4th postnatal day (PD). The last anlages to be formed develop into functional nephrons by PD 10, and the cortex appears mature at PD 12 after formation of the cortex corticis. The renal medulla develops by the longitudinal growth of loops of Henle and collecting ducts. The immature medulla cannot be divided into different zones and corresponds structurally to the later inner stripe of the outer zone. The inner zone is formed by PD 8, and the outer stripe of the outer zone by PD 12. The renal medulla is mature at PD 21.From the start of its development, the renal proximal tubule consists of the pars convoluta and pars recta. In both parts the formation of the brush border is accompanied by the simultaneous appearance of brush border enzymes (alkaline phosphatase, -glutamyltranspeptidase, dipeptidylamino-peptidase IV) and lysosomal enzymes (acid phosphatase, acid -galactosidase, N-acetylglucosaminidase, dipeptidylaminopeptidase II) over the full length of the proximal tubule. During the course of proximal tubule maturation, however, the lysosomal enzyme activities decline in the pars convoluta (with constant brush border enzyme activities), while the brush border enzyme activities increase in the pars recta (with constant lysosomal enzyme activities). The two parts further differ in that they exhibit different lysosomal patterns from the outset, the pars convoluta containing numerous large, highly enzyme-active lysosomes arranged in groups, and the pars recta containing only a few very small lysosomes with low enzyme activity. Thus, even in the newborn rat, the lysosomal pattern of the pars recta already corresponds to that of the mature S3 segment. The S1 and S2 segments of the pars convoluta first differentiate between PD 10 and 21, as the groups of large lysosomes are progressively broken up and the extent of the lysosomal apparatus is diminished, this proceeding in a retrograde direction from the end of the immature pars convoluta.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

15.
Acute tubular necrosis is a frequent occurrence following hypovolemic shock and human renal transplantation. Although this postischemic injury was originally thought to result from ischemia alone, it has recently been recognized that significant tissue injury can occur during the period of reperfusion. The demonstration of the oxygen free-radical-mediated postischemic reperfusion injury by Granger, Rutili, and McCord in ischemic cat intestine suggested that this mechanism might also be operative following renal ischemia. In the kidney, postischemic injury results in necrosis of the proximal renal tubule and accumulation of erythrocytes in the outer renal medulla. It has been proposed that the primary event leading to these pathologic changes is a free-radical-mediated injury to the endothelial cells in the inner stripe of the outer medulla. Experimental evidence in animals subjected to warm and cold ischemia supports a free-radical-mediated mechanism. The clinical significance of these findings is demonstrated in preclinical animal studies of renal transplantation in which approximately two-thirds of the injury following cold ischemia could be ablated by superoxide dismutase administered just prior to reperfusion or by allopurinol when administered both at the time of preservation and reperfusion or at the time of preservation alone.  相似文献   

16.
A unique opportunity presented itself for a morphologic study of experimental unilateral acute renal failure (ARF) in male rats. The ARF had been induced in the rats by temporary occlusion (1h) of the left renal artery. Twenty-nine rats were divided into subsets as follows: 2-3 h, 24 h, 1 week, 2, 4, 8, and 12 weeks following release of occlusion. Microdissection showed a heterogeneous population of abnormally structured proximal tubules in which the regressive lesions of tubular necrosis were combined with the progressive reaction of repair. The lesions demonstrated are reminiscent of those which have been described in ARF in the human and in experimental animals. Many proximal tubules in the 2- to 3-hour subset presented 1-3 disruptive lesions (DLs) while greater numbers of proximal tubules from the 24-hour group presented 1-5 DLs. Many proximal tubules presented no DLs, but nearly all from the 24-hour subset (97-100%) displayed a squamate appearance which paralleled and was caused by acute tubular necrosis. At 1 week, a dilated pars recta was common, but by this time, the squamate pattern had disappeared. Many casts were present. At 2 weeks, many fewer casts were present in proximal tubules and none were seen at 4, 8 or 12 weeks. The nephrons, particularly the proximal tubules, presented a variety of structural alterations at 2, 4, 8 and 12 weeks. Changes of special interest include (1) the presence of swan-necks; (2) a distinctive squamate appearance of the proximal tubules in the animals killed at 24 h; (3) a spiral, curled appearance caused by differential hyperplasia in animals at 4, 8 and 12 weeks, and (4) a tendency for ischemic lesions to involve all layers of the renal cortex.  相似文献   

17.
In this model of oxygen transport in the renal medullary microcirculation, we predicted that the net amount of oxygen reabsorbed from vasa recta into the interstitium is on the order of 10(-6) mmol/s, i.e., significantly lower than estimated medullary oxygen requirements based on active sodium reabsorption. Our simulations confirmed a number of experimental findings. Low medullary PO(2) results from the countercurrent arrangement of vessels and an elevated vasa recta permeability to oxygen, as well as high metabolic needs. Diffusional shunting of oxygen between descending vasa recta (DVR) and ascending vasa recta also explains why a 20-mmHg decrease in initial PO(2) at the corticomedullary junction only leads to a small drop in papillary tip PO(2) (<2 mmHg with baseline parameter values). Conversely, small changes in the consumption rate of DVR-supplied oxygen, in blood flow rate, in hematocrit, or in capillary permeability to oxygen, beyond certain values sharply reduce interstitial PO(2). Without erythrocytes, papillary tip PO(2) cannot be maintained above 10 mmHg, even when oxygen consumption is zero.  相似文献   

18.
The present study was designed to investigate the role of nitric oxide (NO) in modulating the adrenergic vasoconstrictor response of the renal medullary circulation. In anesthetized rats, intravenous infusion of norepinephrine (NE) at a subpressor dose of 0.1 microgram. kg(-1). min(-1) did not alter renal cortical (CBF) and medullary (MBF) blood flows measured by laser-Doppler flowmetry nor medullary tissue PO(2) (P(m)O(2)) as measured by a polarographic microelectrode. In the presence of the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME) in the renal medulla, intravenous infusion of NE significantly reduced MBF by 30% and P(m)O(2) by 37%. With the use of an in vivo microdialysis-oxyhemoglobin NO-trapping technique, we found that intravenous infusion of NE increased interstitial NO concentrations by 43% in the renal medulla. NE-stimulated elevations of tissue NO were completely blocked either by renal medullary interstitial infusion of L-NAME or the alpha(2)-antagonist rauwolscine (30 microgram. kg(-1). min(-1)). Concurrently, intavenous infusion of NE resulted in a significant reduction of MBF in the presence of rauwolscine. The alpha(1)-antagonist prazosin (10 microgram. kg(-1). min(-1) renal medullary interstitial infusion) did not reduce the NE-induced increase in NO production, and NE increased MBF in the presence of prazosin. Microdissection and RT-PCR analyses demonstrated that the vasa recta expressed the mRNA of alpha(2B)-adrenergic receptors and that medullary thick ascending limb and collecting duct expressed the mRNA of both alpha(2A)- and alpha(2B)-adrenergic receptors. These subtypes of alpha(2)-adrenergic receptors may mediate NE-induced NO production in the renal medulla. We conclude that the increase in medullary NO production associated with the activation of alpha(2)-adrenergic receptors counteracts the vasoconstrictor effects of NE in the renal medulla and may play an important role in maintaining a constancy of MBF and medullary oxygenation.  相似文献   

19.
This study evaluated the effects of N-acetyl-L-cysteine (NAC), a free radical scavenger, and N(omega)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthesis inhibitor, on the changes in renal function, intrarenal blood flow distribution (laser-Doppler flowmetry), and plasma peroxynitrite levels during the acute renal failure (ARF) produced by inferior vena cava occlusion (IVCO; 45 min) in anesthetized rats. Renal blood flow fell on reperfusion (whole kidney by -45.7%; cortex -58.7%, outer medulla -62.8%, and papilla -47.7%); glomerular filtration rate (GRF) also decreased (-68.6%), whereas fractional sodium excretion (FE(Na%)) and peroxynitrite and NO/NO plasma levels increased (189.5, 46.5, and 390%, respectively) after ischemia. Pretreatment with L-NAME (10 microg. kg(-1). min(-1)) aggravated the fall in renal blood flow seen during reperfusion (-60%). Pretreatment with NAC (150 mg/kg bolus + 715 microg. kg(-1). min(-1) iv) partially prevented those changes in renal function (GFR only fell by -29.2%, and FE(Na%) increased 119.4%) and laser-Doppler blood flow, especially in the outer medulla, where blood flow recovered to near control levels during reperfusion. These beneficial effects seen in rats given NAC seem to be dependent on the presence of NO, because they were abolished in rats pretreated with L-NAME. Also, the antioxidant effects of NAC prevented the increase in plasma peroxynitrite after ischemia. In conclusion, NAC ameliorates the renal failure and the outer medullary vasoconstriction induced by ICVO, effects that seem to be dependent on the presence of NO and the scavenging of peroxynitrite.  相似文献   

20.
In this study, we compared the traditional murine model with renal pedicle clamp with models that clamped the renal artery or vein alone as well as to a whole body ischemia-reperfusion injury (WBIRI) model. Male C57BL/6J mice underwent either clamping of the renal artery, vein, or both (whole pedicle) for 30 or 45 min followed by reperfusion, or 10 min of cardiac arrest followed by resuscitation up to 24 h. After 30 min of ischemia, the mice with renal vein clamping showed the mostly increased serum creatinine and the most severe renal tubule injury. After 45 min of ischemia, all mice with renal vasculature clamping had a comparable increase in serum creatinine but the renal tubule injury was most severe in renal artery-clamped mice. Renal arterial blood flow was most decreased in mice with a renal vein clamp compared with a renal artery or pedicle clamp. A 30-or 45-min renal ischemia time led to a significant increase in the protein level of interleukin-6, keratinocyte-derived chemokine (KC), and granular colony-stimulating factor in the ischemic kidney, but the KC was the highest in the renal pedicle-clamped kidney and the lowest in the renal vein-clamped kidney. Of note, 10 min of WBIRI led to kidney dysfunction and structural injury, although less than longer time clamping of isolated renal vasculature. Our data demonstrate important differences in ischemic AKI models. Understanding these differences is important in designing future experimental studies in mice as well as clinical trials in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号