首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
engrailed-related genes have been isolated in numerous taxa. Within the insects, some species have a single engrailed-related gene whilst others have two copies, raising the question of when and how often gene duplications have occurred. Here we report the cloning, in the cockroach Periplaneta americana, of two engrailed-related genes Pa-en1 and Pa-en2. By comparing conserved domains and by carrying out a phylogenetic analysis, we conclude that these two genes are likely to be the product of a recent duplication in the cockroach lineage. Pa-en1 and Pa-en2 are co-expressed during early embryogenesis and their segmental pattern of expression appears in an anterior-posterior progression. We have also isolated potential splice variants of Pa-en2 which lack some regulatory domains. The roles these splice variants may play in regulating developmental processes are discussed. Received: 6 August 1999 / Accepted: 4 April 2000  相似文献   

2.
 During embryogenesis of the fruit fly, Drosophila melanogaster, the homeotic genes are required to specify proper cell fates along the anterior-posterior axis of the embryo. We cloned partial cDNAs of homologues of the Drosophila homeotic gene teashirt and five of the homeotic-complex (HOM-C) genes from the thysanuran insect, Thermobia domestica, and assayed their embryonic expression patterns. The HOM-C genes we examined were labial, Antennapedia, Ultrabithorax, abdominal-A and Abdominal-B. As the expression pattern of these HOM-C genes is largely conserved among insects and as Thermobia is a member of a phylogenetically basal order of insects, we were able to infer their ancestral expression patterns in insects. We compare the expression patterns of the Thermobia HOM-C genes with their expression in Drosophila and other insects and discuss the potential roles these genes may have played in insect evolution. Interestingly, the teashirt homologue shows greater variability between Thermobia and Drosophila than any of the HOM-C genes. In particular, teashirt is not expressed strongly in the Thermobia abdomen, unlike Drosophila teashirt. We propose that teashirt expression has expanded posteriorly in Drosophila and contributed to a homogenization of the Drosophila larval thorax and abdomen. Received: 23 July 1998 / Accepted: 1 November 1998  相似文献   

3.
We have cloned and sequenced the single Tribolium homolog of the Drosophila engrailed gene. The predicted protein contains a homeobox and several domains conserved among all engrailed genes identified to date. In addition it contains several features specific to the invected homologs of Bombyx and Drosophila, indicating that these features most likely were present in the ancestral gene in the common ancestor of holometabolous insects. We used the cross-reacting monoclonal antibody, 4D9, to follow the expression of the Engrailed protein during segmentation in Tribolium embryos. As in other insects, Engrailed accumulates in the nuclei of cells along the posterior margin of each segment. The first Engrailed stripe appears as the embryonic rudiment condenses. Then as the rudiment elongates into a germ band, Engrailed stripes appear in an anterior to posterior progression, just prior to morphological evidence of the formation of each segment. As in Drosophila (a long germ insect), expression of engrailed in Tribolium (classified as a short germ insect) is preceeded by the expression of several homologous segmentation genes, suggesting that similar genetic regulatory mechanisms are shared by diverse developmental types. © 1994 Wiley-Liss, Inc.  相似文献   

4.
5.
The segment-polarity gene engrailed of Drosophila melanogaster and its homologues in other arthropods possess a highly conserved expression domain in the posterior portion of each segment. We report here that the two pan-specific antibodies, Mab4D9 and Mab4F11, reveal strikingly different accumulation patterns in both of the malacostracan crustaceans Porcellio scaber (Isopoda) and Procambarus clarkii (Decapoda), compared with insects. The signal detected with Mab4D9 resides in the posterior part of each segment, including the appendages, the ventral and lateral sides of the trunk and the CNS. However, Mab4F11 reveals a signal only in small groups of neurons in the CNS and PNS, primarily localized in the pereon. We observe similar Mab4D9 and Mab4F11 patterns in the crayfish P. clarkii, except that no Mab4F11 signal is detected in the pleon. To address the possibility of multiple engrailed paralogues, we cloned partial cDNAs of two engrailed genes, Ps-en1 and Ps-en2, from P. scaber, and studied their expression patterns using whole-mount in situ hybridization. Although the Ps-en1 and Ps-en2 patterns are comparable in early development, they become distinct in late embryogenesis. Ps-en1 is expressed in the CNS, where Mab4F11 stains, but also accumulates in the epidermis. In contrast, Ps-en2 is expressed in the lateral aspect and limbs of all segments. Phylogenetic analysis of en sequences from crustaceans and insects suggests that the two en genes from the apterygote insect Thermobia domestica (Thysanura) may be related to en1 and en2 of higher crustaceans. Received: 14 February 2000 / Accepted: 1 June 2000  相似文献   

6.
Wingbeat frequency in insects is an important variable in aerodynamic and energetic analyses of insect flight and often is studied on a family‐ or species‐level basis. Meta‐analyses of these studies report order‐level patterns suggesting that flight strategy is moderately well conserved phylogenetically. Studies incorporated into these meta‐analyses, however, use variable methodologies across different temperatures, which may confound results and phylogenetic patterns. In the present study, a high‐speed camera is used to measure wingbeat frequency in a wide variety of species (n = 102) under controlled conditions aiming (i) to determine the validity of previous meta‐analyses showing phylogenetic clustering of flight strategy and (ii) to identify new evolutionary patterns between wingbeat frequency, body mass, wing area, wing length and wing loading at the order level. All flight‐associated morphometrics significantly affect wingbeat frequency. Linear models show that wing area explains the most amount of variation in wingbeat frequency (r2 = 0.59, P ≤ 0.001), whereas body mass explains the least (r2 = 0.09, P ≤ 0.01). A multiple regression model incorporating both body mass and wing area is the best overall predictor of wingbeat frequency (r2 = 0.84, P ≤ 0.001). Order‐level phylogenetic patterns across relationships are consistent with previous studies. Thus, the present study provides experimental validation of previous meta‐analyses and provides new insights into phylogenetically conserved flight strategies across insect orders.  相似文献   

7.
Independent evolution of Toll and related genes in insects and mammals   总被引:6,自引:0,他引:6  
Luo C  Zheng L 《Immunogenetics》2000,51(2):92-98
 Toll and Toll-related proteins play an important role in antibacterial innate immunity in insect, plants, and mammals. We present the first comprehensive phylogenetic analyses of Toll-related genes from both insects and mammals. Drosophila melanogaster contains Toll and a highly homologous gene, Tehao. The protein, Dm Tehao, comprises 795 amino acid residues and its cytoplasmic domain shares a striking 61% identity with Dm Toll. Two Toll homologues were found in another dipteran of medical importance, Anopheles gambiae, a vector for human malaria. One Toll-like gene each was identified from Aedes aegypti and Glossina palpalis palpalis, vectors for yellow fever and trypanosomiasis, respectively. Phylogenetic analyses revealed separate clustering of Toll and related proteins from insects and mammals, suggesting independent evolution of the Toll family of proteins and of innate immunity in arthropods and vertebrates. These results also provide new avenues to understanding the function of Toll proteins in insect innate immunity against bacteria, fungi, and protozoans. Received: 25 June 1999 / Revised: 25 September 1999  相似文献   

8.
To understand better both the development and evolution of insect mouthparts, we have compared the expression pattern of several developmentally important genes in insects with either mandibulate or stylate-haustellate mouthparts. Specifically, we examined the expression of the proboscipedia (pb) and Distal-less (Dll) gene products as well as three regulators of pb, Sex combs reduced (Scr), Deformed (Dfd), and cap 'n' collar (cnc). These genes are known to control the identity of cells in the gnathal segments of Drosophila melanogaster and would appear to have similar conserved functions in other insects. Together we have made an atlas of gene expression in the heads of three insects: Thermobia domestica and Acheta domestica, which likely exemplify the mandibulate mouthparts present in the common insect ancestor, and Oncopeltus fasciatus, which has piercing-sucking mouth parts that are typical of the Hemiptera. At the earliest stages of embryogenesis, only the expression of pb was found to differ dramatically between Oncopeltus and the other insects examined, although significant differences were observed later in development. This difference in pb expression reflects an apparent divergence in the specification of gnathal identity between mandibulate and stylate-haustellate mouthparts, which may result from a "phylogenetic homeosis" that occurred during the evolution of the Hemiptera.  相似文献   

9.
Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae, the insect‐associated species Candida californica, Pichia kluyveri and Metschnikowia andauensis, wine yeast Dekkera bruxellensis, milk yeast Kluyveromyces lactis, the vertebrate pathogens Candida albicans and Candida glabrata, and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co‐occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila, we tested the basal hexapod Folsomia candida (Collembola) in a Y‐tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect–yeast communication evolved prior to the emergence of flowering plants. Co‐occurrence of the same attractant signals in yeast and flowers suggests that yeast‐insect communication may have contributed to the evolution of insect‐mediated pollination in flowers.  相似文献   

10.
Much of the variation among insects is derived from the different ways that chitin has been moulded to form rigid structures, both internal and external. In this study, we identify a highly conserved expression pattern in an insect‐only gene family, the Osiris genes, that is essential for development, but also plays a significant role in phenotypic plasticity and in immunity/toxicity responses. The majority of Osiris genes exist in a highly syntenic cluster, and the cluster itself appears to have arisen very early in the evolution of insects. We used developmental gene expression in the fruit fly, Drosophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant, Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare patterns of Osiris gene expression both during development and between alternate caste phenotypes in the polymorphic social insects. Developmental gene expression of Osiris genes is highly conserved across species and correlated with gene location and evolutionary history. The social insect castes are highly divergent in pupal Osiris gene expression. Sets of co‐expressed genes that include Osiris genes are enriched in gene ontology terms related to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle formation in both embryos and pupae, and genes co‐expressed with Osiris genes affect wing development. Additionally, Osiris genes and those co‐expressed seem to play a conserved role in insect toxicology defences and digestion. Given their role in development, plasticity, and protection, we propose that the Osiris genes play a central role in insect adaptive evolution.  相似文献   

11.
Abstract. The expanding data set on insect molecular systematics allows examination of phylogenetic performance and molecular evolution of different types of gene. Studies combining more than one gene in the same analysis allow examination of the relative contribution and performance of each gene partition and can help inform gene choice for resolving deep and/or problematic divergences. We compared results obtained from analyses of twelve insect data sets in which authors combined one or more nuclear ribosomal genes (28S and/or 18S) with one or more protein-coding genes [elongation factor-1α (EF-1α), histone H3, carbamoylphosphate synthetase domain (CPS domain of CAD, or rudimentary), long-wavelength rhodopsin (LW opsin), glucose-6-phosphate dehydrogenase (G6pd), phosphoenolpyruvate carboxykinase (PEPCK), arginine kinase, and white]. Data sets examined spanned eight orders of insects (Odonata, Ephemeroptera, Hemiptera, Coleoptera, Trichoptera, Lepidoptera, Diptera and Hymenoptera), providing a broad range of divergence times and taxonomic levels. We estimated the phylogenetic utility of the individual genes (using parsimony methods) and characterized the nucleotide substitution patterns (using Bayesian methods) to ask which type of data is preferable for phylogenetic analysis in insects. Nuclear ribosomal and protein coding genes differed little in our measures of phylogenetic performance and patterns of nucleotide substitution. We recommend combining nuclear ribosomal gene data with nuclear protein-coding gene data because each data set has distinct advantages. We do not recommend using mitochondrial genes for higher-level studies of insect phylogeny because reviewed studies demonstrate substitution patterns that lead to high levels of homoplasy.  相似文献   

12.
13.
We have amplified and cloned DNA sequences derived from a gene encoding a SNF1 (sucrose-non-fermenting 1)-related protein kinase which differs from that previously reported from barley. Northern blot and polymerase chain reaction (PCR) analysis of RNA populations, using specific probes and oligonucleotide primers, indicated that the two SNF1-related genes are differentially regulated. One is expressed in all tissues, whereas the other is expressed at high levels in the seed endosperm and aleurone, but at levels undetectable by northern blot analysis in other tissues. Comparisons with other plant SNF1-related protein kinase genes suggest that the form which is expressed at greatly enhanced levels in the seed is less similar to the other plant homologues which have been reported and may be unique to cereals.  相似文献   

14.
Despite previous developmental studies on basally branching wingless insects and crustaceans, the evolutionary origin of insect wings remains controversial. Knowledge regarding genetic regulation of tissues hypothesized to have given rise to wings would help to elucidate how ancestral development changed to allow the evolution of true wings. However, genetic tools available for basally branching wingless species are limited. The firebrat Thermobia domestica is an apterygote species, phylogenetically related to winged insects. T. domestica presents a suitable morphology to investigate the origin of wings, as it forms the tergal paranotum, from which wings are hypothesized to have originated. Here we report the first successful CRISPR/Cas9-based germline genome editing in T. domestica. We provide a technological platform to understand the development of tissues hypothesized to have given rise to wings in an insect with a pre-wing evolution body plan.  相似文献   

15.
Many insects contain diverse gut microbial communities. While several studies have focused on a single or small group of species, comparative studies of phylogenetically diverse hosts can illuminate general patterns of host–microbiota associations. In this study, we tested the hypotheses that (i) host diet and (ii) host taxonomy structure intestinal bacterial community composition among insects. We used published 16S rRNA gene sequence data for 58 insect species in addition to four beetle species sampled from the Sevilleta National Wildlife Refuge to test these hypotheses. Overall, gut bacterial species richness in these insects was low. Decaying wood xylophagous insects harboured the richest bacterial gut flora (102.8 species level operational taxonomic units (OTUs)/sample ± 71.7, 11.8 ± 5.9 phylogenetic diversity (PD)/sample), while bees and wasps harboured the least rich bacterial communities (11.0 species level OTUs/sample ± 5.4, 2.6 ± 0.8 PD/sample). We found evidence to support our hypotheses that host diet and taxonomy structure insect gut bacterial communities (P < 0.001 for both). However, while host taxonomy was important in hymenopteran and termite gut community structure, diet was an important community structuring factor particularly for insect hosts that ingest lignocellulose‐derived substances. Our analysis provides a baseline comparison of insect gut bacterial communities from which to test further hypotheses concerning proximate and ultimate causes of these associations.  相似文献   

16.
Apoptosis has been widely studied from mammals to insects. Inhibitor of apoptosis (IAP) protein is a negative regulator of apoptosis. Recent studies suggest that iap genes could be excellent targets for RNA interference (RNAi)-mediated control of insect pests. However, not much is known about iap genes in one of the well-known insect model species, Tribolium castaneum. The orthologues of five iap genes were identified in T. castaneum by searching its genome at NCBI ( https://www.ncbi.nlm.nih.gov/ ) and UniProt ( https://www.uniprot.org/ ) databases using Drosophila melanogaster and Aedes aegypti IAP protein sequences as queries. RNAi assays were performed in T. castaneum cell line (TcA) and larvae. The knockdown of iap1 gene induced a distinct apoptotic phenotype in TcA cells and induced 91% mortality in T. castaneum larvae. Whereas, knockdown of iap5 resulted in a decrease in cell proliferation in TcA cells and developmental defects in T. castaneum larvae which led to 100% mortality. Knockdown of the other three iap genes identified did not cause a significant effect on cells or insects. These data increase our understanding of iap genes in insects and provide opportunities for developing iap1 and iap5 as targets for RNAi-based insect pest control.  相似文献   

17.
In freshwater systems, parasitological studies have mainly been carried out on vertebrates and molluscs, but little is known about parasites of aquatic insects. We describe the trematodes and nematodes parasitizing the benthic insects of an Andean Patagonian stream and the presence of parasites in the terrestrial adult stages. Members of 3 of 20 insect taxa were found to be parasitized by larval nematodes, and members of six taxa harbored metacercariae of digeneans. In benthic samples, chironomids, simuliids (Order Diptera), and baetids (Order Ephemeroptera) harbored mermithid larvae (Nematoda). The stonefly Antarctoperla michaelseni (Order Plecoptera), the caddisfly Smicridea annulicornis (Order Trichoptera), a watersnipe fly (Order Diptera: Athericidae), and three species of leptophlebiid mayflies (Order Ephemeroptera) were parasitized by encysted plagiorchiid metacercariae (Order Plagiorchiida). Most metacercariae were found in the three species of mayflies with prevalences ranging 15–63% and mean intensities ranging 1.2–4.9. Prevalence declined from summer to early winter, probably because of the emergence of infected nymphs and the recruitment of uninfected new cohorts. The imagos had live metacercariae with higher prevalences and intensities of infection than nymphs. We suggest that these plagiorchiids have an allogenic life cycle, involving a terrestrial definitive host.  相似文献   

18.
To unravel gene expression patterns during rice inflorescence development, particularly at early stages of panicle and floral organ specification, we have characterized random cloned cDNAs from developmental-stage-specific libraries. cDNA libraries were constructed from rice panicles at the stage of branching and flower primordia specification or from panicles undergoing floral organogenesis. Partial sequence analysis and expression patterns of some of these random cDNA clones from these two rice panicle libraries are presented. Sequence comparisons with known DNA sequences in databases reveal that approximately sixtyeight per cent of these expressed rice genes show varying degrees of similarity to genes in other species with assigned functions. In contrast, thirtytwo per cent represent uncharacterized genes. cDNAs reported here code for potential rice homologues of housekeeping molecules, regulators of gene expression, and signal transduction molecules. They comprise both single-copy and multicopy genes, and genes expressed differentially, both spatially and temporally, during rice plant development. New rice cDNAs requiring specific mention are those with similarity toCOP1, a regulator of photomorphogenesis inArabidopsis; sequence-specific DNA binding plant proteins like AP2-domain-containing factors; genes that specify positional information in shoot meristems like leucine-rich-repeat-containing receptor kinases; regulators of chromatin structure like Polycomb domain protein; and also proteins induced by abiotic stresses.  相似文献   

19.

Background  

Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders.  相似文献   

20.
Iron is essential to life,but surprisingly little is known about how iron is managed in nonvertebrate animals.In mammals,the well-characterized transferrins bind iron and are involved in iron transport or immunity,whereas other members of the transferrin family do not have a role in iron homeostasis.In insects,the functions of transferrins are still poorly understood.The goals of this project were to identify the transferrin genes in a diverse set of insect species,resolve the evolutionary relationships among these genes,and predict which of the transferrins are likely to have a role in iron homeostasis.Our phylogenetic analysis of transferrins from 16 orders of insects and two orders of noninsect hexapods demonstrated that there are four orthologous groups of insect transferrins.Our analysis suggests that transferrin 2 arose prior to the origin of insects,and transferrins/,i,and 4 arose early in insect evolution.Primary sequence analysis of each of the insect transferrins was used to predict signal peptides,carboxyl-terminal transmembrane regions,GPI-anchors,and iron binding.Based on this analysis,we suggest that transferrins 2,and 4 are unlikely to play a major role in iron homeostasis.In contrast,the transferrin 1 orthologs are predicted to be secreted,soluble,iron-binding proteins.We conclude that transferrin 1 orthologs are the most likely to play an important role in iron homeostasis.Interestingly,it appears that the louse,aphid,and thrips lineages have lost the transferrin 1 gene and,thus,have evolved to manage iron without transferrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号