首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Effects of pentobarbital pellet implantation on [3H]baclofen binding in the frontal cortex of cerebellum of rat brains were examined. In the frontal cortex, pentobarbital tolerance caused an increase in the number of binding sites (Bmax) without changing their affinity (KD). Twenty-four hours after withdrawal of the pentobarbital pellets, there was a significant increase in the KD and Bmax values. Cerebellar binding, in contrast, was not significantly changed in any of the treatment groups. Addition of 1 mM of pentobarbital directly to binding assays using cortical membrane produced as increase in KD without a change in Bmax.In vitro, pentobarbital affected neither the KD nor the Bmax in the cerebellar [3H]baclofen binding. These results suggest that like the GABAA receptor, [3H]baclofen binding to the GABAB receptor in rat frontal cortex was affected by pentobarbital tolerance and dependence, and that there are regional differences in the properties of the GABAB receptor.  相似文献   

2.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

3.
Abstract: The binding of radioactive piperidine-4-sulphonic acid ([3H]P4S) to thoroughly washed, frozen, and thawed membranes isolated from cow and rat brains has been studied. Quantitative computer analysis of the binding curves for four regions of bovine brain revealed the general presence of two binding sites. In these brain regions less satisfactory computer fits were obtained for receptor models showing one or three binding sites or negative cooperativity. With the use of Tris-citrate buffer at 0°C the two affinity classes for P4S in bovine cortex membranes revealed the following binding parameters: KD= 17 ± 7 nM (Bmax= 0.15 ± 0.07 pmol/mg protein) and KD= 237 ± 100 nM (Bmax= 0.80 ± 0.20 pmol/mg protein). Heterogeneity was also observed for association and dissociation rates of [3H]P4S. The slow binding component (kon= 5.6 × 107 or 8.8 × 107 M-1 min-1, kOff= 0.83 min-1, and KD= 14.7 or 9.4 nM, determined by two different methods in phosphate buffer containing potassium chloride) corresponds to the high-affinity component of the equilibrium binding curve (KD= 11 nM, Bmax= 0.12 pmol/mg protein in the same buffer system). The association and dissociation rates for the subpopulation of rapidly dissociating sites, apparently corresponding to the low-affinity sites, were too rapid to be measured accurately. The binding of [3H]P4S appears to involve the same two populations of sites with Bmax values similar to those for [3H]GABA binding to the same tissue, although the kinetic parameters for the two ligands are somewhat different. Furthermore, comparative studies on the inhibition of [3H]P4S and [3H]GABA binding by various GABA analogues, strongly suggest that P4S binds to the GABA receptors. The different effects of P4S and GABA on benzodiazepine binding are discussed.  相似文献   

4.
Abstract

The interactions of the anticoagulant Heparin with the alpha-2-adrenoceptor in rat brain cortex membranes were investigated. Binding experiments with 3H-Clonidine were performed in both the absence and presence of Heparin. 1 uM Na-Heparin caused a significant decrease in the maximal number of binding sites (Bmax) from 129.4 fmol/mg protein to 93.7 fmol/mg protein with an associated decrease in affinity (KD = 0.79 pM vs. KD= 1.53 pM) of these binding sites. Addition of Na+-Heparin to 3H-Clonidine (3.1 nM) labelled membranes inhibited 50% of specific 3H-Clonidine binding (IC50) at a concentration of 0.95 uM. Based on our findings we conclude that the simultaneous long term administration of Na-Heparin and the antihypertensive agonist Clonidine should be regarded under consideration of the inhibitory effect of Na-Heparin to the alpha-2-adrenoceptors.  相似文献   

5.
A rapid, reliable filtration method for [3H]oxotremorine binding to membranes of the cerebral cortex that allows the direct study of regulation by guanine nucleotides of muscarinic receptors was developed. [3H]Oxotremorine binds to cerebral cortex membranes with high affinity (K D, 1.9 nM) and low capacity (B max, 187 pmol/g protein). These sites, which represent only about 18% of those labeled with [3H]quinuclidinyl benzilate, constitute a population of GTP-sensitive binding sites. Association and dissociation binding experiments revealed a similar value ofK D (2.3 nM). Displacement studies with 1–4000 nM oxotremorine showed the existence of a second binding site of low affinity (K D, 1.2 M) and large capacity (B max, 1904 pmol/g protein). Gpp(NH)p, added in vitro, produced a striking inhibition of [3H]oxotremorine binding with an IC 50 of 0.3 M. Saturation assays, in the presence of 0.5 M Gpp(NH)p, revealed a non-competitive inhibition of the binding with little change in affinity. These results are discussed from the viewpoint of conflicting reports in the literature about guanine nucleotide regulation of muscarinic receptors in reconstituted systems and membranes from different tissues.  相似文献   

6.
The purpose of this study was to investigate the role of central 5-HT2C receptor binding in rat model of pancreatic regeneration using 60–70% pancreatectomy. The 5-HT and 5-HT2C receptor kinetics were studied in cerebral cortex and brain stem of sham operated, 72 h pancreatectomised and 7 days pancreatectomised rats. Scatchard analysis with [3H] mesulergine in cerebral cortex showed a significant decrease (p < 0.05) in maximal binding (Bmax) without any change in Kd in 72 h pancreatectomised rats compared with sham. The decreased Bmax reversed to sham level by 7 days after pancreatectomy. In brain stem, Scatchard analysis showed a significant decrease (p < 0.01) in Bmax with a significant increase (p < 0.01) in Kd. Competition analysis in brain stem showed a shift in affinity towards a low affinity. These parameters were reversed to sham level by 7 days after pancreatectomy. Thus the results suggest that 5-HT through the 5-HT2C receptor in the brain has a functional regulatory role in the pancreatic regeneration.  相似文献   

7.
Abstract: [3H]Ryanodine binding studies of ryanodine receptors in brain membrane preparations typically require the presence of high salt concentrations in assay incubations to yield optimal levels of binding. Here, radioligand binding measurements on rat cerebral cortical tissues were conducted under high (1.0 M KCI) and low (200 mM KCI) salt buffer conditions to determine the effects of ionic strength on receptor binding properties as well as on modulation of ligand binding by Ca2+, Mg2+, β,γ-methylene-adenosine 5′-triphosphate (AMP-PCP), and caffeine. In 1.0 M KCI buffer, labeled titration/equilibrium analyses yielded two classes of binding sites with apparent KD (nM) and Bmax (fmol/mg of protein) values of 2.4 and 34, respectively, for the high-affinity site and 19.9 and 157, respectively, for the low-affinity site. Unlabeled titration/equilibrium measurements gave a single high-affinity site with a KD value of 1.9 nM and a Bmax value of 95 fmol/mg of protein. The apparent KD value derived from association and dissociation studies was 20 pM. Equilibrium binding was activated by Ca2+ (KD/Ca2+= 14 nM), inhibited by Mg2+ (IC60= 5.0 mM), and unaffected by AMP-PCP or caffeine. In 200 mM KCI buffer conditions, labeled titration analyses gave only a single site with a KD value similar to and a Bmax value 1.8-fold greater than those obtained for the low-affinity site in 1.0 M KCI buffer. In unlabeled titration measurements, the KD value was fivefold lower, whereas the Bmax value was unaffected. The KD value derived from association and dissociation analysis was 2.4-fold greater in 200 mM KCI compared with 1.0 M KCI buffer conditions. In 200 mM compared with 1.0 M KCI, the potency with which Mg2+ inhibited binding was increased by 3.8-fold, whereas the affinity of the activation site for Ca2+ was reduced by 13-fold. Addition of caffeine in the presence of low salt increased the affinity of Ca2+ activation by 1.7-fold. The inhibitory effect of Mg2+ on [3H]-ryanodine binding in the presence of 200 mM KCI was reversed by AMP-PCP and caffeine with apparent EC50 values of 0.25 and 7.6 mM, respectively. Taken together, these results indicate that ionic strength is an important consideration in binding studies of brain ryanodine receptors and their interactions with modulatory agents.  相似文献   

8.
Effects of bicuculline in vitro, and acute and chronic treatment of a subconvulsive dose of bicuculline on [3H]SR 95531 binding to discrete regions of rat brains were studied in Sprague-Dawley rats. Scatchard analysis of the binding isotherms exhibited two populations of binding sites for [3H]SR 95531 in frontal cortex, cerebellum, striatum and substantia nigra. The apparent KD for high-affinity sites was significantly increased in the frontal cortex and cerebellum in the presence of bicuculline (1 M) with no change in Bmax. In contrast, the apparent affinity for low-affinity sites was not altered in the presence of bicuculline in these regions, whereas the Bmax was significantly decreased in the cerebellum. Following acute (2 mg/kg, i.p.) or chronic (2 mg/kg, i.p. for 10 days) bicuculline treatment, [3H]SR 95531 binding was also investigated in various regions of brains. The acute bicuculline treatment did not affect the [3H]SR 95531 binding in any of the regions studied. In contrast, apparent affinity for [3H]SR 95531 was significantly decreased in low-affinity sites of all regions studied in rats treated chronically with bicuculline. The Bmax values of high and low-affinity sites were significantly increased in the cerebellum with no change in the frontal cortex, striatum and substantia nigra. The present study demonstrates that chronic bicuculline treatment decreases apparent affinity of [3H]SR 95531 binding whereas the treatment increases apparent affinity of [3H]SR 95531 and [3H]muscimol binding in the cerebellum may be due to true up-regulation of GABA binding sites, involving increased de novo synthesis of receptor protein. These results also suggest that properties of cerebellar GABAA receptors are different from those in other regions.Abbreviations used GABA -aminobutyric acid - FC frontal cortex - CB cerebellum - ST striatum - SN substantia nigra  相似文献   

9.
The effects of chronic pentobarbital (PB) treatment on the binding characteristics of [3H]flunitrazepam (FLU) in rat brain were examined. Saline or sodium PB (500 g/10l/hr) was infused into the lateral cerebral ventricles of rats for 6 days using osmotic pumps. Immediately before withdrawal, there were no significant differences in [3H]FLU binding constants (KD and Bmax) between saline and PB groups. However, 24 hr withdrawal caused an increase in Bmax with no changes in KD. The enhancement of [3H]FLU binding by in vitro addition of chloride ions and PB was not affected after the PB infusion. The PB enhancement of [3H]FLU binding was inhibited by the convulsant, picrotoxicin. PB withdrawal did not cause significant differences in the binding constants of [3H]Ro 15-1788, a benzodiazepine (BZ) antagonist, between the saline and PB groups. Pretreatment of membranes with 0.02 mM of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent, caused decreases in both KD and Bmax in FLU binding in PB-withdrawal membrane, but not in the saline-treated membrane. The enhancement of [3H]FLU binding by chloride ions and PB was not affected by the CHAPS treatment. These results suggest that the change in BZ receptors induced by PB withdrawal is functionally linked to the GABA-BZ-barbiturate receptor complex and that PB withdrawal induces some conformational changes in BZ receptors.  相似文献   

10.
Abstract

Chronic treatment with the D1 and D2 dopamine receptor antagonists SCH 23390 (0.5 mg/kg) and haloperidol decanoate (25 mg/kg) caused an up-regulation in D1 and D2 receptor densities, respectively, with no change in KD. Dopamine (20 μM) interacted with both receptor subtypes in a mixed competitive/non-competitive manner, causing a reduction in ligand binding affinity and an apparent decrease in receptor density. In the presence of dopamine, both vehicle-treated and SCH 23390-treated striatal preparations showed a significant loss in affinity for 3H-SCH 23390 binding to D1 receptors and a decrease in D1 receptor density of approximately 26%. Similarly, dopamine caused a substantial loss in 3H-spiperone binding affinity to D2 receptors and a 46% decrease in Bmax in both vehicle-treated and haloperidol-treated membranes. Thus, receptor up-regulation does not appear to alter the mode of interaction of dopamine with rat striatal dopamine receptors.  相似文献   

11.
Specific 3H-diazepam binding to washed brain membranes from C57BL/6 mice of different age groups (3, 6, 12, 24 and 36 months) was studied in the absence and presence of 30 μM GABA. GABA treatment was found to be effective in decreasing the KD of 3H-diazepam binding of approximately 50% in all age groups tested (mean control KD = 6.5 nM, mean GABA-treated KD = 3.2 nM). No significant changes with age were observed in benzodiazepine receptor KD or Bmax in the presence or absence of GABA.  相似文献   

12.
Summary The specific binding of [3H]corticosterone to hepatocytes is a nonsaturable, reversible and temperature-dependent process. The binding to liver purified plasma membrane fraction is also specific, reversible and temperature dependent but it is saturable. Two types of independent and equivalent binding sites have been determined from hepatocytes. One of them has high affinity and low binding capacity (K D=8.8nm andB max=1477 fmol/mg protein) and the other one has low affinity and high binding capacity (K D=91nm andB max=9015 fmol/mg). In plasma membrane only one type of binding site has been characterized (K D=11.2nm andB max=1982 fmol/mg). As it can be deduced from displacement data obtained in hepatocytes and plasma membrane the high affinity binding sites are different from the glucocorticoid, progesterone nuclear receptors and the Na+,K+-ATPase digitalis receptor. Probably it is of the same nature that the one determinate for [3H]cortisol and [3H]corticosterone in mouse liver plasma membrane. Beta-and alpha-adrenergic antagonists as propranolol and phentolamine did not affect [3H]corticosterone binding to hepatocytes and plasma membranes; therefore, these binding sites are independent of adrenergic receptors. The binding sites in hepatocytes and plasma membranes are not exclusive for corticosterone but other steroids are also bound with very different affinities.  相似文献   

13.
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-1-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (Kd) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.  相似文献   

14.
Summary Sub-type selective ligands revealed a differential distribution of endothelin (ET) receptors within human adrenal glands. High densities of ETA receptors were localized, using [125I]-PD151242, to the smooth muscle layer of the arteries, smaller vessels within the capsular plexus and to the secretory cells of zona glomerulosa (K D=139.8±39.7,B max=69.7±9.1 fmol mg−1 protein, mean of 3 individuals±sem). ETB receptors were present in the medulla (K D=145.2±16.4,B max=75.5±12.3), zona glomerulosa (KD=100.6±35.1,B max=63.1±10.0), fasiculata (K D 145.1±162.,B max=67.9±6.9) and reticularis (KD=118.2±18.6,B max=71.9±6.5). ETB receptors were not detected within the smooth muscle of the vasculature. Messenger RNA encoding both sub-types was present in adrenals. ET-like immunoreactivity was localized to the cytoplasm of the endothelial cells from arteries supplying the gland and resistance vessels within the capsular plexus. Staining was also detected in these cells using anti-big ET-1 and less intensely with anti-big ET-2 antisera but not within cells within the cortex or medulla. Big ET-3-like immunoreactivity was localized to secretory cells of the medulla. Staining was not found using antiserum that could detect ET-3, suggesting further processing of big ET-3 may occur within the plasma, and that the cdrenals could be a source of ET-3. The presence of ET-1 was confirmed by high performance liquid chromatography and radioimmunoassay although ET-3 was not detected. The results suggest that ET-1 is the predominant mature isoform, which is localized mainly to adrenal vasculature, particularly the capsular plexus, and may contribute to blood flow regulation in the gland.  相似文献   

15.
Ethanol exerts numerous pharmacological effects through its interaction with various neurotransmitters. The dopaminergic pathway is associated with cognitive, endocrine, and motor functions, and reinforcement of addictive substances or behaviours. Aldehyde dehydrogenase (ALDH) is a vital enzyme involved with alcohol metabolism and detoxification. In the present study, we investigated the role of cerebral cortex and brain stem dopamine D2 receptors in the functional regulation on ALDH enzyme activity, in ethanol administrated rats. Two groups of rats were selected viz. control and alcoholic. Cerebral cortex, brain stem and the liver dopamine content was decreased significantly (P < 0.05, 0.05, 0.001, respectively) and homovanillic acid/dopamine (HVA/DA) ratio has significantly increased (P < 0.05, 0.001 and 0.001), respectively in ethanol treated rats when compared to control. Scatchard analysis of [3H]YM-09151-2 binding to synaptic membrane preparations of cerebral cortex and brain stem showed a significant decrease (P < 0.001, 0.05, respectively) in B max in ethanol treated rats compared to control and the K d also decreased significantly (P < 0.05). The ALDH analysis showed a significant increase (P < 0.05) in V max in cerebral cortex, plasma and liver of experimental rats when compared with control without having significant change in brain stem but with decreased K m (P < 0.001). Our results suggest that decreased function of dopamine mediated through DA D2 receptor in the cerebral cortex and brain stem enhanced the brain, plasma and liver ALDH activity in ethanol treated rats. This ALDH regulation has significance to correct alcoholics from addiction due to allergic reaction observed in aldehyde accumulation.  相似文献   

16.
The muscarinic acetylcholine receptor was solubilized from rat brain cortex by zwitterionic detergent 3-[(3-chloramidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). About 15% of the binding activity was solubilized and 40% of the activity was destroyed by the detergent. Binding of the muscarinic antagonist [3H]-N-methyl-4-piperidyl benzilate (4NMPB) was saturable. Scatchard analysis revealed a single population of binding sites with KD value of 0.7 nM and a Bmax value of 340 fmoles/mg protein. The homogenate and the CHAPS treated pellet and soluble receptors showed similar affinity for the agonists oxotremorine and carbamylcholine and for the antagonists QNB and atropine. The dissociation of 4NMPB from the soluble receptors appears slightly slower than from the membrane bound receptors.  相似文献   

17.
We have studied the developmental sequence of the GABA system in the rabbit retina using an in vitro binding assay to monitor developmental changes in the post-synaptic receptor. A variety of tissue treatments including perchlorate and Triton X-100 were employed to optimize binding and remove endogenous factors which inhibit binding. Pre-treatment of the tissue with 0.05% Triton X-100 revealed high affinity binding for [3H]GABA which increased in a sigmoidal fashion with the post-natal age of the animal. A constant level of binding, at about 16% of adult levels, was noted until day 8, at which time a rapid increase occurred. At 16 days post-natal, the amount of specific binding reached a plateau near adult levels. Kinetic analysis of the GABA receptor showed an increase in the number of receptors (Bmax) with little or no change in the apparent affinity (KD). Our results suggest that the onset of post-synaptic receptor activity is delayed approximately 1 to 2 days, relative to the pre-synaptic components, and the period of rapid increase in GABA receptor binding coincides with the period of maximum increase in retinal synaptic density.  相似文献   

18.
High affinity binding sites for the calcium channel inhibitor [3H]nitrendipine have been identified in microsomes from pig coronary arteries (KD=1.6 nM; Bmax=35 fmol/mg) and in purified sarcolemma from dog heart (KD=0.11 nM; Bmax=230 fmol/mg). [3H]nitrendipine binding to coronary artery microsomes was completely inhibited by nifedipine, partially by verapamil and D600 and, surprisingly, was stimulated by d-cis-diltiazem but not by 1-cis-diltiazem, a less active isomer. Half-maximal relaxation of KCl-depolarized coronary rings occurred in a slow process at 1 nM nitrendipine or 100 nM d-cis-diltiazem. In dog trabecular strips, nitrendipine caused a negative inotropic response (ED50=1μM). These results suggest that there may be multiple binding sites for different “subclasses” of calcium channel inhibitors, and that drug binding sites may be different molecular entities from the putative calcium channels.  相似文献   

19.
A second messenger role for arachidonic acid (AA) in the regulation of the high-affinity choline uptake (HACU) was suggested. It was repotted that micromolar concentrations of AA applied in vitro decreased the HACU values and increased the specific binding of [3H]hemicholinium-3 ([3H]HCh-3). It was published that L-glutamic acid (GA) applied in vivo produced a fall in the HACU values. In addition, GA liberates free AA. In this study, an ability of GA to influence in vitro the activity of presynaptic cholinergic nerve terminals via its effect on the release of AA is investigated in hippocampal synaptosomes of young Wistar rats. Millimolar concentrations of GA decrease both the high- and low-affinity choline uptake, the specific as well as nonspecific binding of [3H]HCh-3 and the activity of Na+,K+-ATPase. Kinetic analysis (Lineweaver-Burk and Scatchard plots) reveals a change in Vmax and Bmax, but not in KM and KD. It appears very likely that under normal conditions GA applied in vitro is not able to change markedly the choline transport via its effect on the release of AA. Results confirm the hypothesis about an indirect inhibitory role for glutamatergic receptors on cholinergic cells.  相似文献   

20.
1. Interaction in the recognition of endothelin-1 (ET-1), a typical bivalent ET receptor-ligand, between ETA and ETB receptors was investigated in the rat anterior pituitary gland, using our quantitative receptor autoradiographic method with tissue sections preserving the cell-membrane structure and ET receptor-related compounds.2. In saturation binding studies with increasing concentrations (0.77–200 pM) of 125I-ET-1 (nonselective bivalent radioligand), 125I-ET-1 binding to the rat anterior pituitary gland was saturable and single with a K D of 71 pM and a B max of 120 fmol mg–1. When 1.0 M BQ-123 (ETA antagonist) was added to the incubation buffer, binding parameters were 8.3 pM of K D and 8.0 fmol mg–1 of B max, whereas 10 nM sarafotoxin S6c (ETB agonist) exerted little change in these binding parameters (K D, 72 pM; B max, 110 fmol mg–1).3. Competition binding studies with a fixed amount (3.8 pM) of 125I-ET-1 revealed that when 1.0 M BQ-123 was present in the incubation buffer, ETB receptor-related compounds such as sarafotoxin S6c, ET-3, IRL1620 (ETB agonist), and BQ-788 (ETB antagonist) competitively inhibited 125I-ET-1 binding with K is of 140, 18, 350 pM, and 14 nM, respectively, however, these compounds were not significant competitors for 125I-ET-1 binding in the case of absence of BQ-123.4. In cold-ligand saturation studies with a fixed amount (390 pM) of 125I-IRL 1620 (ETB radioligand), IRL1620 bound to a single population of the ETB receptor, and no change was observed in binding characteristics in the presence of 1.0 M BQ-123. 125I-IRL1620 binding was competitively inhibited by ET-1 and ET-3 in the absence of BQ-123, with K is of 20 and 29 pM, respectively, the affinities being much the same as those of 29 nM, in the presence of 1.0 M BQ-123.5. Two nonbivalent ETA antagonists, BQ-123 and PD151242, were highly sensitive and full competitors for 125I-ET-1 binding (5.0 pM), in the presence of 10 nM sarafotoxin S6c.6. Taken together with the present finding that mRNAs encoding the rat ETA and the ETB receptors are expressed in the anterior pituitary gland, we tentatively conclude that although there are ETA and ETB receptors with a functional binding capability for ET receptor-ligands, the ETB receptor does not independently recognize ET-1 without the aid of the ETA receptor. If this thesis is tenable, then ET-1 can bridge between the two receptors to form an ETA–ETB receptor heterodimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号