首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of the addition of a recombinant plasmid containing the pglA gene encoding an alpha-1,4-endopolygalacturonase from Pseudomonas solanacearum on the growth of Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere was determined. Despite a high level of polygalacturonase production by genetically engineered P. putida and P. aeruginosa, the results suggest that polygalacturonase production had little effect on the growth of these strains in soil or rhizosphere.  相似文献   

2.
The aim of this study was to study the degradation of kelthane by Pseudomonas aeruginosa BS827, which carried the plasmid pBS3. This plasmid encodes naphthalene oxidation. The strain was able to survive in the presence of kelthane and to retain its degradative ability. Kelthane also stabilized the biodegradative plasmid that was preserved by 70 to 100% of the cell population. Cells deficient in Nah or Sal characters were less effective in degrading kelthane, whereas plasmid-free cells lost this ability completely. Evidently, the degradative activity of P. aeruginosa BS827 was conditioned by plasmid determinants coupled with genes of the plasmid pBS3 Nah region.  相似文献   

3.
The aim of this study was to study the degradation of kelthane by Pseudomonas aeruginosa BS827, which carried the plasmid pBS3. This plasmid encodes naphthalene oxidation. The strain was able to survive in the presence of kelthane and to retain its degradative ability. Kelthane also stabilized the biodegradative plasmid that was preserved by 70 to 100% of the cell population. Cells deficient in Nah or Sal characters were less effective in degrading kelthane, whereas plasmid-free cells lost this ability completely. Evidently, the degradative activity of P. aeruginosa BS827 was conditioned by plasmid determinants coupled with genes of the plasmid pBS3 Nah region.  相似文献   

4.
Assessment of potential risks involved in the release of genetically engineered microorganisms is facilitated by the availability of monoclonal antibodies (MAbs), a tool potentially able to monitor specific organisms. We raised a bank of MAbs against the soil bacterium Pseudomonas putida 2440, which is a host for modified TOL plasmids and other recombinant plasmids. Three MAbs, 7.3B, 7.4D, and 7.5D, were highly specific and recognized only P. putida bacteria. Furthermore, we developed a semiquantitative dot blot assay that allowed us to detect as few as 100 cells per spot. A 40-kDa cell surface protein was the target for MAbs 7.4D and 7.5D. Detection of the cell antigen depended on the bacterial growth phase and culture medium. The O antigen of lipopolysaccharide seems to be the target for MAb 7.3B, and its in vivo detection was independent of the bacterial growth phase and culture medium. MAb 7.3B was used successfully to track P. putida (pWW0) released in unsterile lake mesocosms.  相似文献   

5.
Overexpression of the gene encoding the poly-3-hydroxy-n-phenylalkanoate (PHPhA) depolymerase (phaZ) in Pseudomonas putida U avoids the accumulation of these polymers as storage granules. In this recombinant strain, the 3-OH-acyl-CoA derivatives released from the different aliphatic or aromatic poly-3-hydroxyalkanoates (PHAs) are catabolized through the -oxidation pathway and transformed into general metabolites (acetyl-CoA, succinyl-CoA, phenylacetyl-CoA) or into non-metabolizable end-products (cinnamoyl-CoA). Taking into account the biochemical, pharmaceutical and industrial interest of some PHA catabolites (i.e., 3-OH-PhAs), we designed a genetically engineered strain of P. putida U (P. putida U fadBA-phaZ) that efficiently bioconverts (more than 80%) different n-phenylalkanoic acids into their 3-hydroxyderivatives and excretes these compounds into the culture broth.  相似文献   

6.
The sulfur present in both agricultural and uncultivated soils is largely in the form of sulfonates and sulfate esters and not as free, bioavailable inorganic sulfate. Desulfurization of the former compounds in vitro has previously been studied in Pseudomonas putida, a common rhizosphere inhabitant. Survival of P. putida strains was now investigated in three sulfur-deficient Danish soils which were found to contain 60 to 70% of their sulfur in sulfonate or sulfate ester form, as determined by X-ray near-edge spectroscopy. The soil fitness of P. putida S-313 was compared with that of isogenic strains with mutations in the sftR and asfA genes (required for in vitro desulfurization of sulfate esters and arylsulfonates, respectively) and in the ssu locus (required in vitro for the desulfurization of both sulfonates and sulfate esters). asfA or sftR mutants showed significantly reduced survival compared to the parent strain in bulk soil that had been enriched with carbon and nitrogen to mimic rhizosphere conditions, but this reduced survival was not observed in the absence of these additives. In a tomato rhizosphere grown in compost, survival of sftR and ssu mutants was reduced relative to the parent strain. The results demonstrate that the ability to desulfurize sulfonates and sulfate esters is critical for survival of bacteria in the rhizosphere but less so in bulk soils outside the influence of plant roots, where carbon is the limiting nutrient for growth.  相似文献   

7.
The potential for real-time PCR (RTm-PCR) detection of the genetically engineered strain Pseudomonas putida GN2 was studied during 2-chlorobenzoate (2-CB) degradation in three different soils. The strain contained the constructed plasmid pGN2 which encoded genes for 2-CB oxidation (cbdA) and the green fluorescent protein (gfp). P. putida GN2 numbers were assessed by plating onto 2-CB minimal media and also by RTm-PCR detection of cbdA and gfp. Addition of P. putida GN2 decreased the time required to degrade 2-CB in all tested soils by more than 7 days. The RTm-PCR estimations of P. putida GN2 numbers strongly correlated with those obtained from plate count methods during active 2-CB degradation. However, after 2-CB degradation in the soils had ceased, RTm-PCR estimations of cbdA and gfp genes were generally one order of magnitude lower than those from plate counts. These results indicate the potential for RTm-PCR to rapidly determine degrader numbers in soil following bioaugmentation but also the need to exercise caution when attempting to determine cell numbers of degraders from the RTm-PCR quantification of plasmid encoded genes after substrate is depleted.  相似文献   

8.
Plasmid pSI30 was constructed to increase the sensitivity of detection of a genetically engineered micro-organism (GEM) and its recombinant DNA in environmental samples. This broad host-range, mobilizable plasmid contained chlorocatechol (clc) degradative genes, antibiotic resistance genes (ampicillin and kanamycin) and a fragment of eukaryotic DNA. The clc genes encode enzymes that convert 3-chlorocatechol to maleylacetic acid permitting the host, Pseudomonas putida RC-4, to grow on 3-chlorobenzoate. This catabolic phenotype was exploited using enrichment procedures to detect RC-4(pSI30) cells, free-living in the water column or when irreversibly bound to surfaces. The eukaryotic DNA sequence provided a unique target allowing positive identification by DNA:DNA hybridization. Using the eukaryotic DNA sequence as a probe, no transfer of the plasmid to indigenous bacteria was detected. Persistence of RC-4(pSI30) and its ability to multiply upon addition of 3-chlorobenzoate were demonstrated 78 days after its addition to natural freshwater. In flow-through microcosms RC-4(pSI30), undetectable as free-living cells, was found by enrichment as irreversibly bound sessile forms. These experiments revealed the stability of pSI30 and its utility in a 'combination' detection system for tracking the survival of a GEM and its DNA in environmental samples.  相似文献   

9.
Vertical soil microcosms flushed with groundwater were used to study the influence of water movement on survival and transport of a genetically engineered Pseudomonas fluorescens C5t strain through a loamy sand and a loam soil. Transport of cells introduced into the top 1 cm of the vertical soil microcosms was dependent on the flow rate of water and the number of times microcosms were flushed with groundwater. The presence of wheat roots growing downward in the microcosms contributed only slightly to the movement of P. fluorescens C5t cells to lower soil regions of the loamy sand microcosms, but enhanced downward transport in the loam microcosms. Furthermore, the introduced P. fluorescens C5t cells were detected in the effluent water samples even after three flushes of groundwater and 10 days of incubation. As evidenced by a comparison of counts from immunofluorescence and selective plating, nonculturable C5t cells occurred in day 10 soil and percolated water samples, primarily of the loamy sand microcosms. Vertical soil microcosms that use water movement may be useful in studying the survival and transport of genetically engineered bacteria in soil under a variety of conditions prior to field testing.  相似文献   

10.
The rpoB gene encoding for β subunit of RNA polymerase is a target of mutations leading to rifampicin resistant (Rifr) phenotype of bacteria. Here we have characterized rpoB/Rifr system in Pseudomonas aeruginosa and Pseudomonas putida as a test system for studying mutational processes. We found that in addition to the appearance of large colonies which were clearly visible on Rif selective plates already after 24 h of plating, small colonies grew up on these plates for 48 h. The time-dependent appearance of the mutant colonies onto selective plates was caused by different levels of Rif resistance of the mutants. The Rifr clusters of the rpoB gene were sequenced and analyzed for 360 mutants of P. aeruginosa and for 167 mutants of P. putida. The spectrum of Rifr mutations characterized for P. aeruginosa grown at 37 °C and that characterized for P. putida grown at 30 °C were dissimilar but the differences almost disappeared when the mutants of both strain were isolated at the same temperature, at 30 °C. The strong Rifr phenotype of P. aeruginosa and P. putida was accompanied only with substitutions of these residues which belong to the putative Rif-binding pocket. Approximately 70% of P. aeruginosa mutants, which were isolated at 37 °C and expressed weak Rifr phenotype, contained base substitutions in the N-terminal cluster of the rpoB gene. The differences in the spectra of mutations at 30 °C and 37 °C can be explained by temperature-sensitive growth of several mutants in the presence of rifampicin. Thus, our results imply that both the temperature for the growth of bacteria and the time for isolation of Rifr mutants from selective plates are critical when the rpoB/Rifr test system is employed for comparative studies of mutagenic processes in Pseudomonas species which are conventionally cultivated at different temperatures.  相似文献   

11.
A genetically engineered strain of Pseudomonas putida U designed for the identification of new therapeutic herbicides has been obtained. In this bacterium, deletion of the homogentisate gene cluster (hmgRABC) confers upon this mutant huge biotechnological possibilities since it can be used: (i) as a target for testing new specific herbicides (p-hydroxy-phenylpyruvate dioxygenase inhibitors); (ii) to identify new therapeutic drugs-effective in the treatment of alkaptonuria and other related tyrosinemia - and (iii) as a source of homogentisic acid in a plant-bacterium association.  相似文献   

12.
Abstract The population dynamics of two genetically engineered Pseudomonas fluorescens strains, D5 and C5t, introduced into a loamy sand soil, in competition with a spontaneous antibiotic-resistant mutant of the corresponding wildtype strain was studied. Strain D5 contained an insertion of transposon Tn5 in its genome, whereas strain C5t was obtained by insertion of Tn 5 :: tox , a Tn 5 -derivative containing a Bacillus thuringiensis var. morrisoni δ-endotoxin gene, into the chromosome using a suicide vector system. Southern hybridization analysis demonstrated the absence of vector sequences, and the presence of single copies of either Tn 5 or Tn 5 :: tox in the respective strains. Western blotting and a bio-assay on larvae of Anopheles stephensi suggested the tox gene was functional in clone C5t. Both D5 and C5t were prototrophic and their generation times in minimal medium were slightly below that of the corresponding wild-type strain. Tn 5 and Tn 5 :: tox were stable in both clones during growth in minimal medium for 16 generations. During growth in competition with the wild-type strain, D5 competed well, however C5t was outcompeted from 50 to below 3% of the population in 40 generations. During growth in competition in the sterile loamy sand, both strains were outcompeted by the parent strain; strain C5t was less competitive than D5. In non-sterile loamy sand, the introduced mixed populations showed a slow decline; both C5t and D5 were outcompeted by the parent strain. The decreased fitness of both modified strains, although significant, was considered to be small in ecological terms. Further, the addition of 10% bentonite clay to the loamy sand resulted in a significant enhancement of survival of the mixed populations, and a stabilization of the proportions between the modified strains and the parent. Finally, there was a trend towards a decrease in the proportion modified strain/parent strain in both mixes in the rhizosphere of wheat.  相似文献   

13.
We released genetically modified Pseudomonas putida WCS358r into the rhizospheres of wheat plants. The two genetically modified derivatives, genetically modified microorganism (GMM) 2 and GMM 8, carried the phz biosynthetic gene locus of strain P. fluorescens 2-79 and constitutively produced the antifungal compound phenazine-1-carboxylic acid (PCA). In the springs of 1997 and 1998 we sowed wheat seeds treated with either GMM 2, GMM 8, or WCS358r (approximately 10(7) CFU per seed), and measured the numbers, composition, and activities of the rhizosphere microbial populations. During both growing seasons, all three bacterial strains decreased from 10(7) CFU per g of rhizosphere sample to below the limit of detection (10(2) CFU per g) 1 month after harvest of the wheat plants. The phz genes were stably maintained, and PCA was detected in rhizosphere extracts of GMM-treated plants. In 1997, but not in 1998, fungal numbers in the rhizosphere, quantified on 2% malt extract agar (total filamentous fungi) and on Komada's medium (mainly Fusarium spp.), were transiently suppressed in GMM 8-treated plants. We also analyzed the effects of the GMMs on the rhizosphere fungi by using amplified ribosomal DNA restriction analysis. Introduction of any of the three bacterial strains transiently changed the composition of the rhizosphere fungal microflora. However, in both 1997 and 1998, GMM-induced effects were distinct from those of WCS358r and lasted for 40 days in 1997 and for 89 days after sowing in 1998, whereas effects induced by WCS358r were detectable for 12 (1997) or 40 (1998) days. None of the strains affected the metabolic activity of the soil microbial population (substrate-induced respiration), soil nitrification potential, cellulose decomposition, plant height, or plant yield. The results indicate that application of GMMs engineered to have improved antifungal activity can exert nontarget effects on the natural fungal microflora.  相似文献   

14.
Vertical soil microcosms flushed with groundwater were used to study the influence of water movement on survival and transport of a genetically engineered Pseudomonas fluorescens C5t strain through a loamy sand and a loam soil. Transport of cells introduced into the top 1 cm of the vertical soil microcosms was dependent on the flow rate of water and the number of times microcosms were flushed with groundwater. The presence of wheat roots growing downward in the microcosms contributed only slightly to the movement of P. fluorescens C5t cells to lower soil regions of the loamy sand microcosms, but enhanced downward transport in the loam microcosms. Furthermore, the introduced P. fluorescens C5t cells were detected in the effluent water samples even after three flushes of groundwater and 10 days of incubation. As evidenced by a comparison of counts from immunofluorescence and selective plating, nonculturable C5t cells occurred in day 10 soil and percolated water samples, primarily of the loamy sand microcosms. Vertical soil microcosms that use water movement may be useful in studying the survival and transport of genetically engineered bacteria in soil under a variety of conditions prior to field testing.  相似文献   

15.
R' plasmids carrying argF genes from Pseudomonas aeruginosa strains PAO and PAC were transferred to Pseudomonas putida argF and Escherichia coli argF strains. Expression in P. putida was similar to that in P. aeruginosa and was repressed by exogenous arginine. Expression in E. coli was 2 to 4% of that in P. aeruginosa. Exogenous arginine had no effect, and there were no significant differences between argR' and argR strains of E. coli in this respect.  相似文献   

16.
Cha M  Lee N  Kim M  Kim M  Lee S 《Bioresource technology》2008,99(7):2192-2199
A new bacterial strain isolated from activated sludge, identified as Pseudomonas aeruginosa EMS1, produced a biosurfactant when grown on acidified soybean oil as the sole carbon source. An optimum biosurfactant production of 5 g/L was obtained with the following medium composition: 2% acidified soybean oil, 0.3% NH4NO3, 0.03% KH2PO4, 0.03% K2HPO4, 0.02% MgSO4.7H2O and 0.025% CaCl2.2H2O, with shaking at 200 rpm for an incubation period of 100 h at 30 degrees C. The production of the biosurfactant was found to be a function of cell growth, with maximum production occurring during the exponential phase. Hemolysis of erythrocytes and thin-layer chromatography studies revealed that the secreted biosurfactant was rhamnolipid. To overcome the complex environmental regulation with respect to rhamnolipid biosynthesis, and to replace the opportunistic pathogen P. aeruginosa with a safe industrial strain, attempts were made to achieve rhamnolipid production in a heterologous host, Pseudomonas putida, using molecular cloning of rhlAB rhamnosyltransferase genes with the rhlRI quorum sensing system, assuming that a functional rhamnosyltransferase would catalyze the formation of rhamnosyl-6-hydroxydecanoyl-6-hydroxydecanoate (mono-rhamnolipid) in P. putida. It was shown that rhamnolipid can be produced in the heterologous strain, P. putida, when provided with the rhamnosyltransferase genes.  相似文献   

17.
A method was developed for the detection of Pseudomonas putida B MM12 released into the rhizosphere of non-sterile barley, using a Random Amplified Polymorphic DNA (RAPD)-generated probe for hybridization with RAPD products generated from DNA extracted from the rhizosphere. The detection procedure involves extraction of rhizosphere bacteria by sonication, extraction of DNA by boiling, RAPD and Southern hybridization with RAPD products and the selected probe. The level of detection of MM12 was at least 1·9×104 cells g−1 barley root. MM12 was detected in rhizosphere when it constituted as little as 0·5% of the culturable population.  相似文献   

18.
Pseudomonas putida PPO301 (pRO103), genetically engineered to degrade 2,4-dichlorophenoxyacetate, affected microbial populations and processes in a nonsterile xeric soil. In soil amended with 2,4-dichlorophenoxyacetate (500 micrograms/g soil) and inoculated with PPO301 (pRO103), the rate of evolution of carbon dioxide was retarded for approximately 35 days; there was a transient increase in dehydrogenase activity; and the number of fungal propagules decreased below detection after 18 days. In unamended soil inoculated with PPO301(pRO103), the rate of evolution of carbon dioxide and the dehydrogenase activity were unaffected, and the numbers of fungal propagules were reduced by about two orders of magnitude. The numbers of total, spore-forming, and chitin-utilizing bacteria were reduced transiently in soil either amended or unamended with 2,4-dichlorophenoxyacetate and inoculated with PPO301(pRO103). The activities of arylsulfatases and phosphatases in soil were not affected by the presence of PPO301(pRO103), either in the presence or absence of 2,4-dichlorophenoxyacetate. In soil amended with 2,4-dichlorophenoxyacetate and inoculated with the parental strain (PPO301) or not inoculated, the evolution of carbon dioxide, the numbers of fungal propagules and of total, spore-forming, and chitin-utilizing bacteria, and the dehydrogenase activity were not affected as in soil inoculated with PPO301(pRO103). These results demonstrated that a genetically engineered microorganism, in the presence of the substrate on which its novel genes can function, is capable of inducing measurable ecological effects in soil.  相似文献   

19.
A 6.0-kilobase EcoRI fragment of the Pseudomonas aeruginosa PAO chromosome containing a cluster of genes specifying carbohydrate catabolism was cloned into the multicopy plasmid pRO1769. The vector contains a unique EcoRI site for cloning within a streptomycin resistance determinant and a selectable gene encoding gentamicin resistance. Mutants of P. aeruginosa PAO transformed with the chimeric plasmid pRO1816 regained the ability to grow on glucose, and the following deficiencies in enzyme or transport activities corresponding to the specific mutations were complemented: glcT1, glucose transport and periplasmic glucose-binding protein; glcK1, glucokinase; and edd-1, 6-phosphogluconate dehydratase. Two other carbohydrate catabolic markers that are cotransducible with glcT1 and edd-1 were not complemented by plasmid pRO1816: zwf-1, glucose-6-phosphate dehydrogenase; and eda-9001, 2-keto-3-deoxy-6-phosphogluconate aldolase. However, all five of these normally inducible activities were expressed at markedly elevated basal levels when transformed cells of prototrophic strain PAO1 were grown without carbohydrate inducer. Vector plasmid pRO1769 had no effect on the expression of these activities in transformed mutant or wild-type cells. Thus, the chromosomal insert in pRO1816 contains the edd and glcK structural genes, at least one gene (glcT) that is essential for expression of the glucose active transport system, and other loci that regulate the expression of the five clustered carbohydrate catabolic genes. The insert in pRO1816 also complemented the edd-1 mutation in a glucose-negative Pseudomonas putida mutant but not the eda-1 defect in another mutant. Moreover, pRO1816 caused the expression of high specific activities of glucokinase, an enzyme that is naturally lacking in these strains of Pseudomonas putida.  相似文献   

20.
Pseudomonas chlororaphis 3732RN-L11 survival rates in soil and wheat rhizosphere were measured using intact soil core microcosms representing 23 sites across Canada. Linear multiple regression (LMR) models were developed to predict the survival rate of this genetically engineered microorganism (GEM) as a function of soil parameters measured at the time of microcosm inoculation. LMR models were tested by comparing their predicted survival rates with observed survival rates from environmental introductions of the GEM by Gagliardi et al. (2001) at five field sites across Canada over two years. No soil parameter (e.g., % clay) was highly correlated with GEM survival rates in soil or wheat rhizosphere. Total fungal colony-forming units (CFUs), % soil titanium (positive correlations), and % soil magnesium (negative correlation) were found to be the best LMR predictors of GEM survival rates in soil over two years. Total soil bacterial CFUs, nitrate, % soil potassium (positive correlations), and exchangeable magnesium (negative correlation) were found to be the best LMR predictors of GEM survival rate in wheat rhizosphere over two years. While LMR models were statistically significant, they were unable to reliably predict the survival rate of the GEM in field trial introductions. The results indicate that there can be considerable uncertainty associated with predicting GEM survival for multi-site environmental introductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号