首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of weight loss and release of nutrients during different phases of decomposition in young water hyacinth leaves were determined under laboratory conditions. The leaves decomposed solely by physical leaching during the initial 4-day phase and later by microbial processes. The largest part of weight loss and nutrient release by physical leaching took place within the first 4 h of incubation and thereafter the decomposition rate declined. Microbial processes decayed leaves at a significantly higher rate than that by physical leaching. The overall decay rate constants were related inversely and the release of nutrients directly to the levels of leaf additions in the lake water. The dissolved inorganic and organic nutrients were released chiefly by abiotic processes during the initial as well as later phases of decay. The release was significantly higher during the initial phase in comparison with that during the later phase. Microbes utilized only a small amount of nutrients that were released during decomposition of water hyacinth leaves. The % release of various elements from the decaying leaves was in the order of K > P > C > Na > N.  相似文献   

2.
Decomposition rates and nutrient dynamic (N, P, K, Ca and Mg) were determined for green leaves and fine branches immersed in the water of a small tributary of Caura river (SE-Venezuela). 16% of the original dry weight of leaves and 11% of branches were lost at the end of the first sampling period: first month for leaves and second month for branches. This dry weight reduction was probably due to leaching of soluble material. After a 9-month period, the mass loss was 60% for leaves and 20% for fine branches. The pattern of dry weight and nutrient losses are in general agreement with previous studies of decomposition of leaf litter in both terrestrial and aquatic ecosystems. Potassium and magnesium are the elements most rapidly lost, showing the dominance of leaching processes; at the end of the first month 7% of the initial amount of K and 18% of the initial amount of Mg remained in leaves. The loss of calcium and phosphorus was much slower: 61% of Ca and 47% of P remained in the leaf material after the first sampling period. In contrast to K, Mg, Ca and P, the initial amount of nitrogen in leaves remained relatively unchanged during the first month of decomposition; in the subsequent sampling period, the amount of N decreased. The elements K and Mg in branches behaved similar to leaves: 4% of K and 22% of Mg were left at the end of the first sampling period. The initial amount of Ca and P in branches decreased slightly: 88% of Ca and 83% of P remained in branches at the end of this first sampling. Nitrogen behaved differently in branches than that in leaves. In branches the amount of N remained relatively unchanged during the first 5 months of decomposition; afterwards, N showed gradual increases, probably due to immobilization. At the end of the experiment the amount of N in branches was 16% higher than the initial amount.  相似文献   

3.
Li  X.  Feng  Y.  Sawatsky  N. 《Plant and Soil》1997,197(2):219-232
This study was conducted during 1992–1994 under semi-arid conditions in Burkina Faso. Our aim was to assess the influence of different mulch materials on soil variables affecting crop growth; i.e. water content, nutrient contents and temperature. The grain yield of Sorghum bicolor was used as a bioindicator, i.e. as an integrated measure of mulch effects.Six treatments were tested, two of which were leaf mulches of special interest for agroforestry. The treatments were chosen to represent mulch materials differing in nutrient content and decomposability (assumed to influence the duration of the impact on soil water content and temperature). The treatments were as follows: (1) control (no addition), (2) Azadirachta indica (neem) leaves, (3) neem leaves + aerobic compost of sorghum straw, (4) aerobic compost, (5) Acacia holocericea (acacia) phyllodes, and (6) wild grass. The mulching rate was 5 t dry matter ha-1, and base mineral fertilizers were applied to all plots.It was shown that the neem leaves, neem leaves + compost, wild grass and acacia phyllodes treatments all significantly influenced the soil by conserving water and reducing temperatures compared with the control or the treatment with compost alone. Plots treated with either neem leaves, neem leaves + compost or compost alone gave higher yields than the three other treatments, generally poorer in nutrients, between which there was little difference. Neem leaves gave the numerically highest response: 1.54 × control, corresponding to a grain yield increase of 554 kg dry mass ha-1 yr-1 when averaged over the three years of study.Thus, yields did not always increase in spite of increased soil moisture and decreased soil temperatures. It was concluded that nutrients were more limiting than water or high soil temperatures under the conditions studied. The highest yields were achieved with a mulch that combines high nutrient delivery with water conservation and temperature reduction, namely mulch from neem leaves.  相似文献   

4.
Cobo  J. G.  Barrios  E.  Kass  D. C. L.  Thomas  R. J. 《Plant and Soil》2002,240(2):331-342
The decomposition and nutrient release of 12 plant materials were assessed in a 20-week litterbag field study in hillsides from Cauca, Colombia. Leaves of Tithonia diversifolia (TTH) and Indigofera constricta (IND) decomposed quickly (k=0.035±0.002 d–1), while those of Cratylia argentea (CRA) and the stems evaluated decomposed slowly (k=0.007±0.002 d–1). Potassium presented the highest release rates (k>0.085 d–1). Rates of N and P release were high for all leaf materials evaluated (k>0.028 d–1) with the exception of CRA (N and P), TTH and IND (P). While Mg release rates ranged from 0.013 to 0.122 d–1, Ca release was generally slower (k=0.008–0.041 d–1). Initial quality parameters that best correlated with decomposition (P>0.001) were neutral detergent fibre, NDF (r=–0.96) and in vitro dry matter digestibility, IVDMD (r=0.87). It is argued that NDF or IVDMD could be useful lab-based tests during screening of plant materials as green manures. Significant correlations (P>0.05) were also found for initial quality parameters and nutrient release, being most important the lignin/N ratio (r=–0.71) and (lignin+polyphenol)/N ratios (r=–0.70) for N release, the C/N (r=0.70) and N/P ratios (r=–0.66) for P release, the hemicellulose content (r=–0.75) for K release, the Ca content (r=0.82) for Ca release, and the C/P ratio (r=0.65) for Mg release. After 20 weeks, the leaves of Mucuna deerengianum released the highest amounts of N and P (144.5 and 11.4 kg ha–1, respectively), while TTH released the highest amounts of K, Ca and Mg (129.3, 112.6 and 25.9 kg ha–1, respectively). These results show the potential of some plant materials studied as sources of nutrients in tropical hillside agroecosystems.  相似文献   

5.
杉木人工林凋落物分解对氮沉降的响应   总被引:2,自引:0,他引:2  
凋落物分解是陆地生态系统养分循环的关键过程,是全球碳(C)收支的一个重要主要组成部分,正受到全球大气氮(N)沉降的深刻影响。探讨大气氮沉降条件下森林凋落物的分解,有利于揭示森林生态系统C平衡和养分循环对全球变化的响应。选择福建沙县官庄林场1992年栽种的杉木(Cunninghamia lanceolata)人工林为研究对象,自2004年开始野外模拟氮沉降试验,至今12年。氮沉降处理分4个水平,N0、N1、N2和N3分别为0、60、120、240 kg N hm-2 a-1。2015年12月开展分解袋试验,对经过氮沉降处理12年的凋落物(叶、枝、果)进行模拟原位分解,每3个月收回一次分解袋样品,为期2年,同时测定凋落物干物质残留量及其C、N和磷(P)含量。结果表明,经2年分解后,氮沉降条件下凋落物叶、枝和果的干物质残留率平均值分别为27.68%、47.02%和43.18%,说明分解速率大小依次为叶 > 果 > 枝。凋落物叶、枝和果的分解系数平均为0.588、0.389和0.455,周转期(分解95%年限)分别为4-5年、6-8年和5-7年。低-中氮处理(N1和N2)均促进凋落物叶、枝和果的分解,以N1的效果更明显,而N3起到抑制作用。N1处理的凋落物叶、枝和果的周转期分别为:4.50年、6.09年和5.85年,N2处理的分别为4.95年、8.16年和6.19年。模拟氮沉降在一定程度上增加了凋落物叶、枝和果分解过程中的N和P含量,但降低了C含量。凋落物叶、枝和果分解过程中C元素呈现释放-富集-释放模式,N和P元素呈现释放与富集交替,除枝的N元素外,其他均表现为释放量大于富集量。  相似文献   

6.
To reveal the environmental and substrate quality effects on decomposition process and enzyme activities, litterbag experiments containing Nuphar and Carex leaves, Nuphar rhizome, and Ranunculus shoot, were carried in five-subalpine marshes in Lake Tahoe basin, USA. Alkaline phosphatase, β-glucosidase, and β-xylosidase activities were determined by a fluorogenic method using methyumbelliferyl substrates. Carex leaves, Nuphar rhizome and leaves, and Ranunculus shoots lost, respectively, 33, 67, 82 and 93% of original dry weight over 268 days. Decay rates were different among substrates but not among marshes. Nitrogen and carbon contents increased during the first 58 days and subsequently remained stable. Phosphorus content was stable during the experimental period except for a decrease in the first 16 days in Nuphar shoots. Enzyme activities in decomposing Carex and Nuphar leaves in four marshes were not significantly affected by environmental conditions. β-glucosidase and β-xylosidase activities in decomposing Carex leaves increased with time, but in other plant tissue these enzyme activities remained stable during experimental period. Enzyme activities were significantly different among decomposing substrates. Alkaline phosphatase activity was highest in Nuphar leaves (ca. 1286 μ-mole h−1 g DW −1) but lower and similar in other plant tissues (ca. 100 and 10 μ-mole h −1 g DW −1, respectively). This study showed differences in decay rates and enzyme activities rely on substrate and not the environment conditions of the study area. Decomposition rates in the early stage of decomposition were related to cumulative enzyme activities.  相似文献   

7.
Nutrient cycling within three Pinus sylvestris stands was studied in eastern Finland. The aim of the study was to determine annual fluxes and distribution of N, P, K, Ca, Mg, Zn, Fe, B, and Al in the research stands. Special emphasis was put on determining the importance of different fluxes, especially the internal cycle within the trees in satisfying the tree nutrient requirements for biomass production. The following nutrient fluxes were included, input; free precipitation and throughfall, output; percolation through soil profile, biological cycle; nutrient uptake from soil, retranslocation within trees, return to soil in litterfall, release by litter decomposition. The distribution of nutrients was determined in above- and belowground tree compartments, in ground and field vegetation, and in soil.The nitrogen use efficiencies were 181, 211 and 191 g of tree aboveground dry matter produced per g of N supplied by uptake and retranslocation in the sapling, pole stage and mature stands, respectively. Field vegetation was more efficient in nitrogen use than trees. Stand belowground/aboveground and fine root/coarse root biomass ratios decreased with tree age. With only slightly higher fine root biomass, almost three times more nitrogen had to be taken-up from soil for biomass production in the mature stand than in the sapling stand.The annual input-output balances of most nutrients were positive; throughfall contained more nutrients than was lost in mineral soil leachate. The sulphate flux contributed to the leaching of cations, especially magnesium, from soil in the mature stand.Retranslocation supplied 17–42% of the annual N, P and K requirements for tree aboveground biomass production. Precipitation and throughfall were important in transferring K and Mg, and also N in the sapling stand. Litterfall was an important pathway for N, Ca, Mg and micro nutrients, especially in the oldest stands.  相似文献   

8.
为探讨沙漠公路防护林地表凋落物的分解速率和养分释放动态对施肥的响应,采用凋落物分解袋法,对塔里木沙漠公路防护林地乔木状沙拐枣(Calligonum arborescens)同化枝、梭梭(Haloxylon ammodendron)同化枝和多枝柽柳(Tamarix ramosissima)枝凋落物在施肥处理下的分解及养分释放特征进行研究。结果表明:经过420d的分解,3种凋落物质量残留率在对照(不施肥)、施用氮肥、施用磷钾复合肥处理间存在显著性差异(P0.05)。乔木状沙拐枣同化枝、梭梭同化枝和多枝柽柳枝在对照处理下的质量残留率分别为56.95%、31.32%和50.24%。施肥处理下3种凋落物均呈现出梭梭同化枝分解速率最快,多枝柽柳枝次之,乔木状沙拐枣同化枝分解最慢。施用磷钾复合肥极显著提高了3种凋落物的分解速率(P0.01);施用氮肥则促进多枝柽柳枝的分解,抑制乔木状沙拐枣和梭梭同化枝的分解。凋落物分解过程中,对照组3种植物凋落物的C、N、P和K元素均呈现净释放状态;施肥后凋落物的N、P和K元素呈现出富集-释放的模式。凋落物初始P含量和C/N、C/P比值是分解初期的主导因素,初始K、木质素、纤维素含量和C/N、木质素/N比值是分解后期的主要控制因素。研究表明,施肥显著影响沙漠公路防护林地表凋落物的分解,增加防护林地表凋落物的养分归还量,延后养分释放的时间,改善塔里木沙漠公路防护林地的土壤肥力。凋落物初始C/N比值是预测塔里木沙漠凋落物分解的重要因素,且不同分解时期影响凋落物分解的初始化学组成有所差异。  相似文献   

9.
The effect of Ca on Cu toxicity in runner bean plants (Phaseolus coccineus L. cv. Piěkny Jaś) grown hydroponically in nutrient solution was studied. The toxic effect of excess Cu on plants depends on their age and Ca content in the medium. Copper applied in excess to the plants at the early phase of leaf development strongly limits the uptake of Ca ions from the nutrient solution, particularly their translocation to leaves. Increased Ca content limits the inhibitory effect of Cu on leaf growth and decreases the content of chloroplast pigments to the level approximate to that of control. At this growth stage the effect of excess Cu is at least partially connected with limited Ca transport to leaves. At the intermediate leaf phase Cu-treated plants react slightly to changed Ca content. At the end of the primary leaf development increased Ca concentration in the medium intensifies senescence processes induced by excess Cu. The changes are partially connected with intensified water deficit. Increased Ca content in the nutrient solution limits Cu accumulation in the individual organs of Cu-treated plants. However, Cu accumulation in leaves is not decreased at a high level of Ca. Copper generally decreases Ca content in the youngest plants, whereas in the oldest ones only in the case of a low level of Ca in the nutrient solution.  相似文献   

10.
利用会同杉木林25年的定位测定的基础数据,探讨了不同林龄杉木(Cunninghamia lanceolata(lamb) Hook)枝叶凋落前的养分转移特征,为人工林经营管理提供科学依据。结果表明:杉木枝叶凋落前年均养分转移量为3.22—31.89 kg hm~(-2) a~(-1),其中,叶占71.31%—94.41%,枝占5.59%—28.69%。枝的养分转移量随林龄增加而增加。林分20年生以前,叶的养分转移量呈上升趋势,20年生以后,呈下降趋势。枝的养分转移率为20.97%—22.59%,叶是22.98%—26.06%,枝和叶的养分转移率都随林龄增加而增大。各林龄段的枝的养分转移率差异不显著(P0.05),叶的养分转移率除1—7年生与其他林龄段的差异显著(P0.05),其余各林龄段之间差异不显著(P0.05)。转移的元素量中,N和K占83.75%—84.25%,P、Ca、Mg占15.75%—16.25%。N、P、K、Ca、Mg的转移率分别为24.59%—34.53%,36.36%—46.64%,42.86%—51.27%,3.68%—7.35%,3.67%—9.56%。养分转移率主要受枝叶凋落前、后的养分浓度差值与枝叶凋落前的养分浓度控制,与凋落物量无关。养分的转移量不仅受枝叶凋落前、后的养分浓度差值的影响外,更多地取决于凋落物量,而且与杉木生长发育特征有很大的关联。  相似文献   

11.
鼎湖山南亚热带常绿阔叶林植物营养元素含量分配格局研究   总被引:37,自引:0,他引:37  
在鼎湖山南亚热带常绿阔叶林中,植物叶片营养元素含量为N 0.946%-2.535%,P 0.030-0.127%,K 0.614%-1.833%,Ca 0.442%-1.995%,Mg 0.024%-0.188%。叶片各营养养元素间相关性较差,仅P与Mg及Mg与K之间存在显著的线性相关。叶片N元素平均含量在各层中的序列为:乔木Ⅲ〉乔木Ⅱ〉乔木Ⅰ〉灌木〉藤本〉草本;其它营养元素浓度随层次分配的规律性  相似文献   

12.
Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i   总被引:8,自引:0,他引:8  
Allison SD  Vitousek PM 《Oecologia》2004,141(4):612-619
Physiological traits that contribute to the establishment and spread of invasive plant species could also have impacts on ecosystem processes. The traits prevalent in many invasive plants, such as high specific leaf areas, rapid growth rates, and elevated leaf nutrient concentrations, improve litter quality and should increase rates of decomposition and nutrient cycling. To test for these ecosystem impacts, we measured initial leaf litter properties, decomposition rates, and nutrient dynamics in 11 understory plants from the Hawaiian islands in control and nitrogen + phosphorus fertilized plots. These included five common native species, four of which were ferns, and six aggressive invasive species, including five angiosperms and one fern. We found a 50-fold variation in leaf litter decay rates, with natives decaying at rates of 0.2–2.3 year–1 and invaders at 1.4–9.3 year–1. This difference was driven by very low decomposition rates in native fern litter. Fertilization significantly increased the decay rates of leaf litter from two native and two invasive species. Most invasive litter types lost nitrogen and phosphorus more rapidly and in larger quantities than comparable native litter types. All litter types except three native ferns lost nitrogen after 100 days of decomposition, and all litter types except the most recalcitrant native ferns lost >50% of initial phosphorus by the end of the experiment (204–735 days). If invasive understory plants displace native species, nutrient cycling rates could increase dramatically due to rapid decomposition and nutrient release from invasive litter. Such changes are likely to cause a positive feedback to invasion in Hawaii because many invasive plants thrive on nutrient-rich soils.  相似文献   

13.
The initiation of nutrient cycling is important in developing a self-sustaining ecosystem, where inputs of fertilizer are not required, on rehabilitated open-cut mines. The loss of dry weight, surface area and nutrients from senescent jarrah (Eucalyptus marginata) leaves enclosed in litterbags for 18 months were measured on 27 rehabilitated bauxite mines and in two jarrah forests on the Darling Plateau in Western Australia. Respiration and acetylene reduction by the litter were also determined. Linear trends were found between litter decomposition on rehabilitated mines and understorey cover density, litter cover and a measure of the effect of the revegetation on soil moisture. During decomposition, N was retained relative to litter dry weight and, in most cases, amounts of N increased. Losses of Ca and S were correlated with dry weight losses. Sodium, Cl, Mg and K were lost from the litter by leaching. Rehabilitation techniques, including sowing a legume understorey and replacement of the topsoil, should favour the development of nutrient cycling on mined areas.  相似文献   

14.
吴科君  马文超  李瑞  陈红纯  黄超  何欣芮  魏虹 《生态学报》2019,39(14):5308-5316
立柳因良好的耐淹性常被用于三峡库区消落带的植被重建。为探讨立柳如何通过营养元素的积累和分配来适应库区消落带冬季水淹,于2015年5月对三峡库区消落带植被修复示范基地内3个采样带(175 m,170 m和165 m)中立柳的生长状况以及叶、枝条和根的营养元素含量特征进行分析。结果表明:(1)经过3个水淹周期后,随着水淹强度的增加,立柳的株高、基径和冠幅均受到一定的抑制;但与种植初期相比,3个采样带中立柳的株高、基径和冠幅均显著增加,且生长状态良好。(2)立柳各器官中营养元素含量均处于正常水平,但水淹抑制了根中N、P的积累,促进了Fe和Mn的积累;水淹显著降低了海拔165 m处立柳叶和枝条中Ca含量、枝条和根中Cu和Zn的含量。(3)水淹胁迫导致N、P、K、Mg元素更多地在叶中积累,而Cu和Zn在枝条中大量积累,这有利于退水后植株的光合合成以及恢复生长;Fe、Mn元素在根中大量积累,其对根系正常生理可能造成的干扰值得进一步关注。研究表明,在不同的水淹胁迫梯度下,立柳可针对性地调整其营养元素积累和分配方式,保持植株正常的生长状态,对维护三峡库区消落带生态系统的正常结构和功能具有重要作用。但在库区消落带植被恢复和重建工作中,需加强170 m以下海拔区域立柳生长的监测和研究。  相似文献   

15.
Yonghong Xie  Hongyan Qin  Dan Yu 《Hydrobiologia》2004,529(1-3):105-112
The responses of decomposition to N and P supply were investigated in three leaf types of water hyacinth (Eichhornia crassipes (Mart.) Solms): dead green leaves collected from Donghu Lake; green, and brown leaves collected from outdoor tanks. The ratios of C:N, C:P, lignin:N and lignin:P were lowest in the green leaves collected from Donghu Lake, and highest in the brown leaves collected from outdoor tanks. Decomposition constant (k) of water hyacinth varied greatly, ranged from 0.006 to 0.099 d–1. Leaf litters decayed most quickly within the initial two weeks during the experimental period, but decomposition rate decreased significantly in the following days. Decomposition and nutrient (N and P) release were fastest in the green leaves collected from Donghu Lake, intermediate in the green leaves collected from outdoor tanks, slowest in the brown leaves collected from outdoor tanks. Statistical analyses revealed that the effects of P-availability on decomposition rate and N, P release rate of the three litter types were significant, whereas the impacts of N-availability was insignificant (p > 0.05) except for the brown leaves collected from outdoor tanks. These results suggest that decomposition rate and nutrient content dynamics of water hyacinth differ with their growth habitats, and could partly be regulated by nutrient availability, especially by P-availability, in the environments.  相似文献   

16.
为探明三倍体毛白杨纸浆林林地养分状况,寻求可能的养分输入途径,实现林地长期生产力的维持和提高,采用网袋法研究了三倍体毛白杨(Populus tomentosa)落叶、枝条(直径小于0.5 cm)、细根(直径小于2 mm)以及树皮的分解率和分解过程的变化规律。结果表明:4种残余物在一年中分解速率的变化总体表现为快—慢—快的节律,但位于地下的细根分解过程与位于地表的落叶、枝条和树皮有所不同,方差分析表明,不同阶段的分解率之间存在显著差异;4种残余物的分解速率不同,实验后期细根的分解率为42.5%,落叶的分解率为30.5%,树皮的分解率为26.0%,枝条的分解率为20.9%,不同残余物的分解速率之间存在显著性差异。这充分说明三倍体毛白杨纸浆林中不同有机残体在不同分解阶段具有不同特征,今后应进一步研究其养分释放规律,采取针对性措施加快其分解,以不断提高立地生产力。  相似文献   

17.
Tropical rain forests are characterized by large numbers of the species with diverse growth habits. The objective of the present study was to determine the distribution of nutrient content in the major trees of the tropical rain forests in Xishuangbanna. This will improve the understanding of the nutrient losses from such sites that result from harvesting and flow of nutrients within the ecosystem and lead to the development of effective and rational forest management strategies. Based on the results in this study, the distribution of nutrients among biomass components of trees varied: The ordering of major elements concentrations was K>N>Mg>Ca>P in branch, stem and root tissues but was N>K>Mg>Ca>P in leaves. The maximum amount of all nutrients per ha occurred in the stems followed by branches, roots and leaves. Of the total uptake of 6167.7 kg ha−1 of all nutrients, the contribution of various nutrients was found to be N (2010.6 t ha−1), P (196.3 t ha−1), K (2123.8 kg ha−1), Ca (832 kg ha−1) and Mg (1005 kg ha−1). However, comparing the nutrient uptake of other tropical and sub tropical forests, the results indicated that rates for the Xishuangbanna forests were 20–35% lower than previously reported values.  相似文献   

18.
The decomposition and nutrient release temporal patterns of three oil palm residues used as soil mulch were studied. Empty fruit bunches (EFB; 1000 kg plot?1), Eco‐mat (processed EFB carpet; 30 kg plot?1), and pruned palm fronds (180 kg plot?1) were left to decompose (and sampled monthly) on the soil surface for 8 months. The frond's leaflets had the highest initial concentration for most nutrients, and the frond's rachis and Eco‐mat the lowest. The order of residue quality and rate of residue mass loss were: leaflets > fronds > EFB > Eco‐mat > rachis. EFB however had a higher mass loss rate than the fronds. Residue mass loss and nutrient release rates were faster at the beginning than at the end of the decomposition period. Leaflets released the highest total amount of nutrients (except for K), and rachis the lowest. The fronds released either significantly higher (for N and Ca) or not significantly different (for P and Mg) total amount of nutrients than EFB. Converting EFB into Eco‐mat had resulted in nutrient losses (e.g. N, K and Mg) and a residue quality reduction in Eco‐mat. This study's results would aid in better soil and oil palm fertilisation management.  相似文献   

19.
Summary Growth of the broad-leaved graminoid Milium effusum, occurring in shady deciduous forests, was matched with periods of high light influx through the tree canopy in spring and autumn. Fertile shoots grew faster than sterile shoots. Leaves on flowering shoots were fully developed when the budbreak started on the trees, whereas nonflowering shoots had fully developed leaves when the tree canopy closed. Leaf concentrations of N and P were high (6.1 and 0.74% respectively) in spring but decreased as the leaves expanded. Maximum pool sizes of N and P in whole tillers were reached about one month after the onset of spring growth, whereas maximum spring pools of K, Mg, and Ca were timed with peak biomass about one month later. The leaves lost nutrients during summer when no growth took place. Since leaching losses were negligible, nutrients were probably allocated from the leaves to support root growth. Autumn reallocation to winter stores was low. The pattern of growth and nutrient use suggests that light availability, i.e., the resource in relatively lowest supply, regulates the investment of the resource in highest supply, i.e., nutrients. This is consistent with previously reported observations on Eriophorum vaginatum, a graminoid of low nutrient — high light environments. This species utilizes nutrients efficiently at the expense of less efficient acquisition of carbon. We suggest that selection for efficient utilization of the resource in lowest relative supply has been a strong driving force behind the physiological adaptation of both species to their environments.  相似文献   

20.
Young maize (Zea mays L.) plants, 7 days after germination were exposed to nutrient solutions which were either aerated or not aerated for 14 days. Nutrients were supplied as 50% strength Hoagland’s solution or, in the case of the four ‘low nutrient’ treatments, N, P, K or Ca were supplied at the equivalent of 10% strength Hoagland’s solution. Shoot fresh weight was decreased by 25% due to lack of aeration; O2 deficiency also impaired leaf elongation but not dry weights, suggesting that lack of O2 in the roots impaired cell expansion in shoots more than dry weight accumulation. The distribution of N, P, K and Ca within shoots was consistent with their relative mobilities in the phloem; at least 7% of Ca in plants after 14 days of treatments was found in the oldest leaf whereas N, P and K were rapidly remobilised to younger tissues. Between 33 and 49% of the total N, P and K in the shoot was found in the 40 mm of tissue at the base of the growing leaves in plants grown for 14 days at low nutrient concentrations. Concentrations (dry weight basis) of phloem-mobile nutrients were also greatest in the growing zones of the leaves, especially in the case of N and P. Calcium, on the other hand, was found in relatively low concentrations in the youngest tissue and as with the other nutrients, concentrations declined due to low external supply, non-aeration or a combination of both. In spite of the failure of Ca to move from old to young leaves, the effect of the deficiencies of N, P and K was probably as severe as that of Ca in the youngest tissues of treated plants. Calcium uptake by the whole shoot appeared to be slightly less sensitive to O2 deficits than that of N, P and K. This compensated for the failure of Ca to move to growing tissues during periods of low external Ca supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号