首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The sodium flux across individual tight junctions (TJ) of low-resistance MDCK cell monolayers grown on glass coverslips was determined as a measure of paracellular permeability. Increases in perfusate glucose concentration from 5 to 25 mm decreased tight junction Na permeability. This permeability decrease was not specific as nonmetabolizable analogues of glucose caused similar diminutions in TJ Na permeability. Stimulation of protein kinase A increased TJ Na permeability, and inhibition of protein kinase A decreased TJ Na permeability. Transepithelial electrical resistance of monolayers grown on permeable supports did not change as predicted from the observed alterations in TJ Na permeability of monolayers grown on glass coverslips. Fluorescent labeling of cell F-actin showed that increased F-actin in the perijunctional ring correlated with higher TJ Na permeability. Although a low dose of cytochalasin D did not change TJ Na permeability, it disrupted the cytoskeleton and blocked the decrease in TJ Na permeability caused by glucose. Cytochalasin D failed to block the effects of protein kinase A stimulation or inhibition on TJ Na permeability. We conclude that tight junction sodium permeability is regulated both by protein kinase A activity and by other processes involving the actin cytoskeleton. Received: 17 June 1997/Revised: 28 August 1997  相似文献   

2.
Retinol and retinoic acid have been incorporated into the artificial membrane systems, planar bimolecular lipid membranes and liposomes, and their effects on several membrane parameters have been measured. 1. Retinol and retinoic acid increased the permeability of egg lecithin liposomes to K+, I? and glucose when incorporated into the membranes at levels as low as 0.5 membrane mol%. Retinoic acid influenced permeability more than did retinol for each of the solutes tested. 2. Retinol and retinoic acid both decreased the electrical resistance of egg lecithin-planar bimolecular lipid membranes from 0.5 to 8 membrane mol%. Retinoic acid effected a larger change than did retinol. 3. Retinol and retinoic acid increased the permeability of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes to water at 1.0 and 3.0 membrane mol%. A larger effect on water permeability was measured for retinoic acid than for retinol. 4. Retinol and retinoic acid at 1.0 and 3.0 membrane mol% were shown to lower the phase-transition temperature of liposomes composed of dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. Phase-transition temperatures were monitored by abrupt changes in water permeability and liposome size associated with the transition. Retinoic acid lowered the phase-transition temperature of dimyristoylphosphatidylcholine liposomes more than did retinol, while both retinoids had almost the same effect on dipalmitoylphosphatidylcholine liposomes.  相似文献   

3.
Insulin is thought to exert its effects on cellular function through the phosphorylation or dephosphorylation of specific regulatory substrates. We have analyzed the effects of okadaic acid, a potent inhibitor of type 1 and 2A protein phosphatases, on the ability of insulin to stimulate glucose transport in rat adipocytes. Insulin and okadaic acid caused a 20-25- and a 3-6-fold increase, respectively, in the rate of 2-deoxyglucose accumulation by adipose cells. When added to cells previously treated with okadaic acid, insulin failed to stimulate 2-deoxyglucose accumulation beyond the levels observed with okadaic acid alone. Treatment of cells with okadaic acid did not inhibit the effect of insulin to stimulate tyrosine autophosphorylation of its receptor. These results indicate that okadaic acid potently inhibits the effects of insulin to stimulate glucose uptake and/or utilization at a step after receptor activation. To clarify the mechanism of inhibition by okadaic acid, the intrinsic activity of the plasma membrane glucose transporters was analyzed by measuring the rate of uptake of 3-O-methylglucose by adipose cells, and the concentration of adipocyte/skeletal muscle isoform of the glucose transporter (GLUT-4) in plasma membranes isolated from these cells. Insulin caused a 15-20-fold stimulation of 3-O-methylglucose uptake and a 2-3-fold increase in the levels of GLUT-4 detected by immunoblotting of isolated plasma membranes; okadaic acid caused a 2-fold increase in 3-O-methylglucose uptake, and a 1.5-fold increase in plasma membrane GLUT-4. Pretreatment of cells with okadaic acid blocked the effect of insulin to stimulate 3-O-methylglucose uptake and to increase the plasma membrane concentration of GLUT-4 beyond the levels observed with okadaic acid alone. These results indicate that the effect of okadaic acid to inhibit the effect of insulin on glucose uptake is exerted at a step prior to the recruitment of glucose transporters to the cell surface, and suggest that a phosphatase activity may be critical for this process.  相似文献   

4.
The effect of insulin and its seven synthetic derivatives on spontaneous bioelectrical activity of the cerebral cortex of rabbits was described in the paper. The influence of these substances on consolidation of long-term memory of white rats was shown at normal state and during experimental neurosis. Insulin was supposed to influence the higher nervous activity not only through glucose metabolism but also by means of increase of permeability of biological membranes for amino acids.  相似文献   

5.
Leptin is thought to be a lipostatic signal that contributes to body weight regulation. Zinc might play an important role in appetite regulation and its administration stimulates leptin production. However, there are few reports in the literature on its role on leptin levels in the obese population. The present work assesses the effect of zinc supplementation on serum leptin levels in insulin resistance (IR). A prospective double-blind, randomized, clinical, placebo-controlled study was conducted. Fifty-six normal glucose-tolerant obese women (age: 25-45 yr, body mass index [BMI] = 36.2 +/- 2.3 kg/m2) were randomized for treatment with 30 mg zinc daily for 4 wk. Baseline values of both groups were similar for age, BMI, caloric intake, insulin concentration, insulin resistance, and zinc concentration in diet, plasma, urine, and erythrocytes. Insulin and leptin were measured by radioimmunoassay and IR was estimated by the homeostasis model assessment (HOMA). The determinations of zinc in plasma, erythrocytes, and 24- h urine were performed by using atomic absorption spectrophotometry. After 4 wk, BMI, fasting glucose, and zinc concentration in plasma and erythrocyte did not change in either group, although zinc concentration in the urine increased from 385.9 +/- 259.3 to 470.2 +/- 241.2 +/- microg/24 h in the group with zinc supplementation (p < 0.05). Insulin did not change in the placebo group, whereas there was a significant decrease of this hormone in the supplemented group. HOMA also decreased from 5.8 +/- 2.6 to 4.3 +/- 1.7 (p < 0.05) in the zinc-supplemented group but did not change in the placebo group. Leptin did not change in the placebo group. In the zinc group, leptin was 23.6 +/- 12.3 microg/L and did not change. More human data from a unique population of obese individuals with documented insulin resistance would be useful in guiding future studies on zinc supplementation (with higher doses or longer intervals) or different measures.  相似文献   

6.
The effect of docosahexaenoic acid (DHA) intake on cardiac mitochondrial function was evaluated in permeabilized fibers in insulin deficiency and insulin resistance in rats. The insulin-deficient state was obtained by streptozotocin injection 2 mo before investigations. Insulin resistance was obtained by feeding a 62% fructose diet for 3 mo. DHA was incorporated in the diet to modify the fatty acid composition of cardiac membranes, including mitochondria. Insulin deficiency decreased mitochondrial creatine kinase (mi-CK) activity and mitochondrial sensitivity to ADP. DHA intake prevented these alterations. Moreover, the insulin-deficient state significantly decreased n-3 polyunsaturated fatty acids (PUFA) and slightly increased n-6 PUFA in both cardiac and mitochondrial membranes, inducing a significant increase in the n-6-to-n-3 ratio. DHA intake maintained high myocardial and mitochondrial DHA content. Insulin deficiency also decreased glutamate- and palmitoylcarnitine-supported mitochondrial respiration, but DHA intake did not prevent these effects. In contrast, insulin resistance did not affect mi-CK activity or sensitivity to ADP. However, insulin resistance influenced the myocardial fatty acid composition with decreased n-6 and n-3 PUFA contents and increased monounsaturated fatty acid content. Only slight alterations were observed in mitochondrial fatty acid composition, and they were corrected by DHA intake. Moreover, insulin resistance decreased the glutamate-supported respiration, and DHA intake did not influence this effect. In conclusion, the impairment of cardiac mitochondrial function was more pronounced in the insulin-deficient state than in insulin resistance. The modification of fatty acid composition of cardiac and mitochondrial membranes by DHA partially prevented the mitochondrial alterations induced in the two models.  相似文献   

7.
Insulin receptor associated kinase activity and its relationships with the insulin resistance of streptozotocin-induced diabetes were investigated in rats, using solubilized, partially purified insulin receptors from liver membranes. Insulin receptor kinase activity was measured by means of both autophosphorylation and phosphorylation of the exogenous substrate Glu4:Tyr1. Diabetes was associated with a 45% reduction in kinase activity, in the same number of insulin receptors, with no change in insulin binding affinity. To investigate the independent roles of hyperglycemia and hypoinsulinemia on the observed impairment of receptor kinase activity, diabetic rats were fasted for 24 h in order to normalize blood glucose levels only. After this short fast, no change in kinase activity, from the values measured in fed diabetic animals, was observed. Our findings suggest that streptozotocin diabetes is associated with a reduction of insulin receptor kinase activity, which a short fast is not able to reverse.  相似文献   

8.
Feeding lactating rats on high-fat cheese crackers in addition to laboratory chow increased the dietary intake of fat from 2 to 20% of the total weight of food eaten and decreased mammary-gland lipogenesis in vivo by approx. 50%. This lipogenic inhibition was also observed in isolated mammary acini, where it was accompanied by decreased glucose uptake. These inhibitions were completely reversed by incubation with insulin. Insulin had no effect on the rate of glucose transport into acini, nor on pyruvate dehydrogenase activity as estimated by the accumulation of pyruvate and lactate, suggesting that these are not the sites of lipogenic inhibition. Insulin stimulated the incorporation of [1-14C]acetate into lipid in acini from high-fat-fed rats. In the presence of alpha-cyanohydroxycinnamate, a potent inhibitor of mitochondrial pyruvate transport, and with glucose as the sole substrate, neither [1-14C]glucose incorporation into lipid nor glucose uptake were stimulated by insulin. Insulin did stimulate the incorporation of [1-14C]acetate into lipid in the presence of alpha-cyanohydroxycinnamate, and this was accompanied by an increase in glucose uptake by the acini. This indicated that increased glucose uptake was secondary to the stimulation of lipogenesis by insulin, which therefore must occur via activation of a step in the pathway distal to mitochondrial pyruvate transport. Insulin stimulated acetyl-CoA carboxylase activity measured in crude extracts of acini from high-fat-fed rats, restoring it to values close to those of chow-fed controls. The effects of insulin on acetyl-CoA carboxylase activity and lipogenesis were not antagonized by adrenaline or dibutyryl cyclic AMP.  相似文献   

9.
1. The effects of varying the plasma insulin concentration by infusion while maintaining euglycaemia by infusion of glucose on nutrient arterio-venous differences across the hind-limb and mammary gland in lactating and non-lactating sheep were investigated. 2. Insulin infusion increased the glucose arterio-venous difference across the hind-limb; this effect of insulin was decreased by lactation, suggesting that lactation induces insulin resistance in skeletal muscle. 3. Lactation increased but insulin infusion decreased the plasma concentrations of acetate, beta-hydroxybutyrate and non-esterified fatty acids. 4. Insulin infusion decreased the arterio-venous differences of acetate and hydroxybutyrate across the hind-limb; this effect of insulin is probably indirect, resulting from the decrease in plasma concentrations of these metabolites. 5. Infusion of insulin had no effect on the glucose arterio-venous difference across the mammary gland, but did decrease the oxygen arterio-venous difference. 6. The results suggest that lactation results in insulin resistance in skeletal muscle, at least with respect to glucose utilization; this should facilitate the preferential utilization of glucose by the mammary gland.  相似文献   

10.
Hepatic vasculature is not thought to pose a permeability barrier for diffusion of macromolecules from the bloodstream to hepatocytes. In contrast, in extrahepatic tissues, the microvasculature is critically important for insulin action, because transport of insulin across the endothelial cell layer is rate limiting for insulin-stimulated glucose disposal. However, very little is known concerning the role in this process of pericytes, the mural cells lining the basolateral membrane of endothelial cells. PDGF-B is a growth factor involved in the recruitment and function of pericytes. We studied insulin action in mice expressing PDGF-B lacking the proteoglycan binding domain, producing a protein with a partial loss of function (PDGF-B(ret/ret)). Insulin action was assessed through measurements of insulin signaling and insulin and glucose tolerance tests. PDGF-B deficiency enhanced hepatic vascular transendothelial transport. One outcome of this change was an increase in hepatic insulin signaling. This correlated with enhanced whole body glucose homeostasis and increased insulin clearance from the circulation during an insulin tolerance test. In obese mice, PDGF-B deficiency was associated with an 80% reduction in fasting insulin and drastically reduced insulin secretion. These mice did not have significantly higher glucose levels, reflecting a dramatic increase in insulin action. Our findings show that, despite already having a high permeability, hepatic transendothelial transport can be further enhanced. To the best of our knowledge, this is the first study to connect PDGF-B-induced changes in hepatic sinusoidal transport to changes in insulin action, demonstrating a link between PDGF-B signaling and insulin sensitivity.  相似文献   

11.
A G Douen  T Ramlal  G D Cartee  A Klip 《FEBS letters》1990,261(2):256-260
Insulin and acute exercise (45 min of treadmill run) increased glucose uptake into perfused rat hindlimbs 5-fold and 3.2-fold, respectively. Following exercise, insulin treatment resulted in a further increase in glucose uptake. The subcellular distribution of the muscle glucose transporters GLUT-1 and GLUT-4 was determined in plasma membranes and intracellular membranes. Neither exercise nor exercise----insulin treatment altered the distribution of GLUT-1 transporters in these membrane fractions. In contrast, exercise, insulin and exercise----insulin treatment caused comparable increases in GLUT-4 transporters in the plasma membrane. The results suggest that exercise might limit insulin-induced GLUT-4 recruitment and that following exercise, insulin may alter the intrinsic activity of plasma membrane glucose transporters.  相似文献   

12.
Insulin resistance has been proposed as a critical factor in the development of Type II diabetes, hypertension, dyslipidemia, and coronary artery disease. However, even in normal healthy individuals, a wide range of in vivo insulin action has been found. In the present study we sought to examine this heterogeneity in Insulin action in both normal and spontaneously obese nonhuman primates. Maximal insulin responsiveness as measured by a hyperinsulinemic euglycemic clamp, fasting plasma glucose, and insulin levels, β-cell insulin response to glucose, glucose tolerance, and adiposity were measured in 22 male rhesus monkeys. Results showed that lean animals (body fat ≤ 22%) had higher insulin-stimulated glucose uptake (M rate: 14.42±1.8 mg/kg FFM/min) compared to obese (8.08±0.8). The obese monkeys, with 23–49% body fat, had a wide range of M values (5.32-14.29 mg/kg FFM/min) which showed no relationship to degree of adiposity. In all monkeys, M values had a strong inverse correlation with fasting plasma insulin levels (r=-0.76; p<0.001), but not with fasting glucose or glucose disappearance rate. We conclude that neither degree of obesity above a critical threshold nor range of glucose tolerance is related to insulin resistance; however, in individuals with normal glucose tolerance an early reliable indicator of defective insulin action appears to be fasting insulin concentration. Longitudinal determination of basal insulin levels obtained under standardized conditions so as to minimize extraneous variability is likely to strengthen the ability to predict insulin resistance and possible later development of overt Type II diabetes.  相似文献   

13.
Viable human polymorphonuclear leukocytes isolated from peripheral blood were incubated for 1 h at 37 degrees C with variable concentrations of insulin in a saline medium buffered at pH 7.4. The hormone increased glucose consumption by about 40% without influencing the permeability of the membranes to glucose, whose uptake followed a passive diffusion process. The measurement of intermediates localized activation of glycolysis by insulin, down to 0.36 nM, at the phosphofructokinase step. However, the spectrophotometric measurement showed no activation of phosphofructokinase after preincubation with insulin of either intact granulocytes or crude or ultracentrifuged homogenates. The level of cyclic AMP, which is known to activate phosphofructokinase, was not modified by insulin; cyclic GMP did not activate the enzyme in the granulocyte extracts: neither of the two nucleotides can therefore be considered as a direct messenger of the action of insulin on phosphofructokinase. An important fraction of the extra glucose consumed under the influence of insulin was recovered as neither glycogen nor lactate, nor was it oxidized in the Krebs cycle. It might be assumed to have been converted into glycerolipids. However, insulin produced no detectable accumulation of triglycerides and activated neither the pentose phosphate pathway nor oxidative decarboxylation of pyruvate. The fate of the extra glucose consumed under the influence of insulin therefore remains questionable.  相似文献   

14.
In 3T3-L1 adipocytes, we previously reported that glucosamine impairs insulin stimulation of glucose transport, which is accompanied by impaired insulin stimulation of serine/threonine kinase Akt. To examine the role of Akt in glucosamine-induced insulin resistance, we investigated time course for insulin stimulation of Akt activity and glucose transport during recovery from glucosamine-induced insulin resistance. After induction of insulin resistance by glucosamine, we washed cells to remove glucosamine and incubated them for various times. After one hour, insulin stimulated-glucose transport was significantly increased and continued to increase up to 6-24 h. Insulin stimulation of Akt, however, did not increase after 1-3 h and began to slightly increase after 6 h. Next, we investigated effects of osmotic shock and vanadate on glucose transport in glucosamine-treated cells and found that glucosamine completely inhibited their actions in these cells. These data suggest that an Akt-independent mechanism is operative in glucosamine-induced insulin resistance and glucosamine impairs glucose transport stimulated by various stimuli involving and not involving Akt activation.  相似文献   

15.
Some recent studies associated insulin therapy with negative cardiovascular events and shorter lifespan. SUR2A, a KATP channel subunit, regulate cardioprotection and cardiac ageing. Here, we have tested whether glucose and insulin regulate expression of SUR2A/KATP channel subunits and resistance to metabolic stress in heart H9c2 cells. Absence of glucose in culture media decreased SUR2A mRNA, while mRNAs of Kir6.2, Kir6.1, SUR1 and IES SUR2B were increased. 2-deoxyglucose (50 mM) decreased mRNAs of SUR2A, SUR2B and SUR1, did not affect IES SUR2A and IES SUR2B mRNAs and increased Kir6.2 mRNA. No glucose and 2-deoxyglucose (50 mM) decreased resistance to an inhibitor of oxidative phosphorylation, DNP (10 mM). 50 mM glucose did not alter KATP channel subunits nor cellular resistance to DNP (10 mM). Insulin (20 ng/ml) in both physiological and high glucose (50 mM) down-regulated SUR2A while upregulating Kir6.1 and Kir6.2 (in high glucose only). Insulin (20 ng/ml) in physiological and high glucose decreased cell survival in DNP (10 mM). As opposed to Kir6.2, infection with SUR2A resulted in titre-dependent cytoprotection. We conclude that insulin decreases resistance to metabolic stress in H9c2 cells by decreasing SUR2A expression. Lower cardiac SUR2A levels underlie increased myocardial susceptibility to metabolic stress and shorter lifespan.  相似文献   

16.
Objective : Insulin resistance is observed in individuals with normal glucose tolerance. This indicates that increased insulin secretion can compensate for insulin resistance and that additional defects are involved in impaired glucose tolerance or type 2 diabetes. The objective of this study was to evaluate a procedure aimed at assessing the compensatory mechanisms to insulin resistance. Research Methods and Procedures : Eight healthy nonobese female patients were studied on two occasions, before and after administration of 2 mg/d dexamethasone for 2 days during a two‐step hyperglycemic clamp. Insulin secretion was assessed from plasma insulin concentrations. Insulin sensitivity was assessed from the ratio of whole‐body glucose use (6, 6 2H2 glucose) to plasma insulin concentrations. This procedure is known to induce a reversible impairment of glucose tolerance and insulin resistance. Results : In all subjects, dexamethasone induced a decrease in insulin sensitivity and a proportionate increase in first‐phase insulin secretion and in insulin concentrations at both steps of glycemia. The resulting hyperinsulinemia allowed the restoration of normal whole‐body glucose uptake and the suppression of plasma free fatty acids and triglycerides. In contrast, the suppression of endogenous glucose production was impaired after dexamethasone (p < 0.01). Discussion : Increased insulin secretion fully compensates dexamethasone‐induced insulin resistance in skeletal muscle and adipose tissue but not in the liver. This suggests that failure to overcome hepatic insulin resistance can impair glucose tolerance. The compensatory insulin secretion in response to insulin resistance can be assessed by means of a hyperglycemic clamp after a dexamethasone challenge.  相似文献   

17.
Thiazolidinediones (TZDs) and metformin decreased the incidence of diabetes in subjects at risk for developing diabetes and improved peripheral or hepatic insulin sensitivity, respectively. Whether they also directly improved beta-cell function is not clear. In vitro studies showed improved beta-cell function in response to TZDs and metformin; however, the effects of TZDs or metformin on beta-cell function in humans are still uncertain. We hypothesized that both TZDs and metformin directly affect beta-cell function. We evaluated beta-cell function and insulin sensitivity (S(I)) in subjects with impaired glucose tolerance or a history of gestational diabetes using oral and intravenous glucose tolerance tests in addition to the glucose-potentiated arginine stimulation test. In contrast to metformin, pioglitazone improved S(I), glucose tolerance, and insulin-independent glucose disposal [glucose effectiveness (S(G))]. Neither pioglitazone nor metformin significantly improved beta-cell compensation for insulin resistance [disposition index (DI)], but the change in DI significantly correlated with baseline S(I). Insulin secretion in response to arginine at maximally potentiating glucose levels (AIR(max)) tended to increase after metformin and to decrease after pioglitazone; however, when adjusted for S(I), the changes were not significant. Our results demonstrate that, in nondiabetic subjects at risk for diabetes, pioglitazone, but not metformin, significantly improved glucose tolerance by improving S(I) and S(G). We did not find any evidence that either pioglitazone or metformin improved beta-cell function. Improved beta-cell compensation was observed primarily in the subgroup of subjects that had the lowest S(I) at baseline.  相似文献   

18.
Insulin resistance has been demonstrated both in insulin deficiency and insulin excess in man and in animals. This study was carried out in normal man to evaluate the role of insulinopenia in the pathogenesis of insulin resistance. Insulin suppression was obtained by 4 h somatostatin (SRIF) infusion. Insulin receptors on circulating monocytes were evaluated before and after SRIF infusion; an insulin tolerance test (ITT) was performed after SRIF, saline or SRIF and replacing basal insulin secretion. Insulin binding to circulating monocytes did not change after 4 h insulinopenia (2.19 +/- 0.30 vs. 2.35 +/- 0.80%), while insulin sensitivity appeared decreased after SRIF (KITT = 0.97 +/- 0.13) as compared with saline (KITT = 3.30 +/- 0.42), and this effect was prevented by insulin (KITT = 2.46 +/- 0.38). A relationship was detected between KITT and plasma insulin concentration before ITT (r = 0.85, p less than 0.01), suggesting that insulin deficiency is the main cause of the phenomenon observed. The present data suggest that basal insulin concentration plays an essential role in the control of insulin sensitivity. If insulin binding on monocytes mimics the behavior of major insulin target tissues, it is possible that the impaired insulin action after 4 h of insulin deficiency is related to a post binding effect.  相似文献   

19.
1. The interaction of insulin and isometric exercise on glucose uptake by skeletal muscle was studied in the isolated perfused rat hindquarter. 2. Insulin, 10 m-i.u./ml, added to the perfusate, increased glucose uptake more than 10-fold, from 0.3-0.5 to 5.2-5.4 mumol/min per 30g of muscle in hindquarters of fed and 48h-starved rats respectively. In contrast, it did not stimulate glucose uptake in hindquarters from rats in diabetic ketoacidosis. 3. In the absence of added insulin, isometric exercise, induced by sciatic-nerve stimulation, increased glucose uptake to 4 and 3.4 mumol/min per 30g of muscle in fed and starved rats respectively. It had a similar effect in rats with moderately severe diabetes, but it did not increase glucose uptake in rats with diabetic ketoacidosis or in hindquarters of fed rats that had been "washed out" with an insulin-free perfusate. Insulin, at concentrations which did not stimulate glucose uptake in resting muscle, restored the stimulatory effect of exercise in these situations. 4. The stimulation of glucose uptake by exercise was independent of blood flow and the degree of tissue hypoxia; also it could not be reproduced by perfusing resting muscle with a medium previously used in an exercise experiment. 5. At rest glucose was not detectable in muscle cell water of fed and starved rats even when perfused with insulin. In the presence of insulin, a small accumulation of glucose, 0.25 mM, was noted in the muscle of ketoacidotic diabetic rats, suggesting inhibition of glucose phosphorylation, as well as of transport. 6. During exercise, the calculated intracellular concentration of glucose in the contracting muscle increased to 1.1-1.6mM in the fed, starved and moderately diabetic groups. Insulin significantly increased the already high rates of glucose uptake by the hindquarters of these animals but it did not alter the elevated intracellular concentration of glucose. 7. In severely diabetic rats, exercise did not cause glucose to accumulate in the cell in the absence of insulin. In the presence of insulin, it increased glucose uptake to 6.1 mumol/min per 30g of muscle and intracellular glucose to 0.72 mM. 8. The data indicate that the stimulatory effect of exercise on glucose uptake requires the presence of insulin. They suggest that in the absence of insulin, glucose uptake is not enhanced by exercise owing to inhibition of glucose transport into the cell.  相似文献   

20.
—In living rats the concentration of insulin in the circulating blood was raised and independently of this the glucose concentration in the blood plasma was varied from hyperglycaemic to hypoglycaemic levels. Hyperglycaemia increased the influx of glucose into the brain and it also, for a limited period, increased the glucose gain by the brain. Insulin, on the other hand, did not affect influx but significantly increased the gain of glucose by the brain. It is suggested that although both hyperglycaemia and insulin can increase glucose gain by the brain they do so in entirely different ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号