首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Zhao X  Rush M  Schwartz S 《Journal of virology》2004,78(20):10888-10905
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.  相似文献   

11.
In the yeast Saccharomyces cerevisiae, L30 is one of many ribosomal proteins that is encoded by two functional genes. We have cloned and sequenced RPL30B, which shows strong homology to RPL30A. Use of mRNA as a template for a polymerase chain reaction demonstrated that RPL30B contains an intron in its 5' untranslated region. This intron has an unusual 5' splice site, C/GUAUGU. The genomic copies of RPL30A and RPL30B were disrupted by homologous recombination. Growth rates, primer extension, and two-dimensional ribosomal protein analyses of these disruption mutants suggested that RPL30A is responsible for the majority of L30 production. Surprisingly, meiosis of a diploid strain carrying one disrupted RPL30A and one disrupted RPL30B yielded four viable spores. Ribosomes from haploid cells carrying both disrupted genes had no detectable L30, yet such cells grew with a doubling time only 30% longer than that of wild-type cells. Furthermore, depletion of L30 did not alter the ratio of 60S to 40S ribosomal subunits, suggesting that there is no serious effect on the assembly of 60S subunits. Polysome profiles, however, suggest that the absence of L30 leads to the formation of stalled translation initiation complexes.  相似文献   

12.
13.
14.
15.
16.
The U1 snRNP is known to play a critical role in spliceosome assembly, at least in part through base pairing of its RNA moiety to the substrate, but many details remain to be elucidated. To further dissect U1 snRNA function, we have analyzed 14 single point mutations in the six nucleotides complementary to the 5' splice site for their effects on growth and splicing in the fission yeast Schizosaccharomyces pombe. Three of the four alleles previously found to support growth of Saccharomyces cerevisiae are lethal in S. pombe, implying a more critical role for the 5' end of U1 in fission yeast. Furthermore, a comparison of phenotypes for individual nucleotide substitutions suggests that the two yeasts use different strategies to modulate the extent of pairing between U1 and the 5' splice site. The importance of U1 function in S. pombe is further underscored by the lethality of several single point mutants not examined previously in S. cerevisiae. In total, only three alleles complement the U1 gene disruption, and these strains are temperature-sensitive for growth. Each viable mutant was tested for impaired splicing of three different S. pombe introns. Among these, only the second intron of the cdc2 gene (cdc2-I2) showed dramatic accumulation of linear precursor. Notably, cdc2-I2 is spliced inefficiently even in cells containing wild-type U1, at least in part due to the presence of a stable hairpin encompassing its 5' splice site. Although point mutations at the 5' end of U1 have no discernible effect on splicing of pre-U6, significant accumulation of unspliced RNA is observed in a metabolic depletion experiment. Taken together, these observations indicate that the repertoire of U1 activities is used to varying extents for splicing of different pre-mRNAs in fission yeast.  相似文献   

17.
The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33 degrees C or lower than at 37 to 41 degrees C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41 degrees C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. We exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39 degrees C. However, after a short (about 30-min) lag following a shift to 33 degrees C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA. Increased splicing at this site in 54-5A4 viral RNA is probably driven by the unavailability of the usual 3' splice site for exon ligation. The thermosensitivity of this alternate splice event suggests that the sequences governing the thermodependence of MuSVts110 RNA splicing do not involve any particular 3' splice site or branch point sequence, but rather lie near the 5' end of the intron.  相似文献   

18.
19.
Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3' splice site (3'ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3'ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3'ss distance and masked potential 3'ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3'ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3'ss recognition.  相似文献   

20.
Alternative 5' splice site selection allows Bcl-x to produce two isoforms with opposite effects on apoptosis. The pro-apoptotic Bcl-x(S) variant is up-regulated by ceramide and down-regulated by protein kinase C through specific cis-acting exonic elements, one of which is bound by SAP155. Splicing to the Bcl-x(S) 5' splice site is also enforced by heterogeneous nuclear ribonucleoprotein (hnRNP) F/H proteins and by Sam68 in cooperation with hnRNP A1. Here, we have characterized exon elements that influence splicing to the 5' splice site of the anti-apoptotic Bcl-x(L) isoform. Within a 86-nucleotide region (B3) located immediately upstream of the Bcl-x(L) donor site we have identified two elements (ML2 and AM2) that stimulate splicing to the Bcl-x(L) 5' splice site. SRp30c binds to these elements and can shift splicing to the 5' splice site of Bcl-x(L) in an ML2/AM2-dependent manner in vitro and in vivo. The B3 region also contains an element that represses the use of Bcl-x(L). This element is bound by U1 small nuclear ribonucleoprotein and contains two 5' splice sites that can be used when the Bcl-x(L) 5' splice site is mutated or the ML2/AM2 elements are deleted. Conversely, mutating the cryptic 5' splice sites stimulates splicing to the Bcl-x(L) site. Thus, SRp30c stimulates splicing to the downstream 5' splice site of Bcl-x(L), thereby attenuating the repressive effect of upstream U1 snRNP binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号