首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract: Opioid peptide release in the hippocampus was shown to be increased immediately following amygdala kindling stimulation in freely moving rats using microdialysis combined with a universal opioid peptide radioimmunoassay (RIA). Extracellular opioid peptide levels were elevated (55% above basal levels) within the first 10 min after electrical stimulation-induced partial seizures in previously nonkindled animals. Fully kindled rats showed lower extracellular opioid peptide levels (40% reduction) during the interictal period [16 ± 2.1 days (mean ± SEM) after the last stage V seizure], in comparison with values obtained from the sham-kindled group under basal conditions. However, opioid peptide release in fully kindled rats increased above 152% of interictal levels within the first 20 min after onset of fully kindled seizures, attaining peak levels equal to that of the partial kindled group and returning to prestimulation conditions 40–60 min following the ictal events. The majority of the immunoreactive material recovered from the hippocampus within the first 20 min following partial and generalized kindled seizures coeluted with dynorphin-A (1–6), dynorphin-A (1–8), and Leu-enkephalin by HPLC/RIA analysis. It is proposed that the enhanced opioid peptide release in hippocampus induced by amygdala kindling stimulation might be associated with either enhanced excitability or seizure suppression as seizure susceptibility fluctuates. The reduced interictal opioid peptide levels may also underlie some interictal behavioral disturbances.  相似文献   

2.
The development of convulsant readiness in rabbits during kindling electrical stimulation of the hippocamp was studied as was the dependence of the motor seizure pattern on the degree of epileptiform activity generalization in the CNS. The kindling electrical stimulation of the hippocamp gave rise to the formation in different rabbits of the two main types of afterdischarges. One of them was characterized by high-frequency and high-amplitude spikes (total duration 8-30 s) and the other one by continuous, rather long (50-100 s) hypersynchronous paroxysms. In the interictal period, the animals with the first type demonstrated the occurrence of spontaneous spikes (in all the brain structures under study) that sometimes progressed to a more or less prolonged seizure discharges. At the same time in the animals with the second type of afterdischarges the EEG in the interictal period was slightly different from normal. Despite this fact the seizures induced by electrical stimulation ran a milder course (short-term clonic seizures) in animals with the first type of afterdischarges as compared to those with the second type (long-term clonicotonic seizures). It is assumed that the severity of the motor seizure does not depend on the degree of epileptic activity generalization in the CNS.  相似文献   

3.
Abstract: There is compelling evidence that excessive GABA-mediated inhibition may underlie the abnormal electrical activity, initiated in the thalamus, associated with epileptic absence seizures. In particular, the GABAB receptor subtype seems to play a critical role, because its antagonists are potent inhibitors of absence seizures, whereas its agonists exacerbate seizure activity. Using a validated rat model of absence epilepsy, we have previously found no evidence of abnormal GABAB receptor density or affinity in thalamic tissue. In the present study, we have used in vivo microdialysis to monitor changes in levels of extracellular GABA and other amino acids in this brain region. We have shown that basal extracellular levels of GABA and, to a lesser extent, taurine are increased when compared with values in nonepileptic controls. However, modifying GABAergic transmission with the GABAB agonist (−)-baclofen (2 mg/kg i.p.), the GABAB antagonist CGP-35348 (200 mg/kg i.p.), or the GABA uptake inhibitor tiagabine (100 µ M ) did not produce any further alteration in extracellular GABA levels, despite the ability of these compounds to increase (baclofen and tiagabine) or decrease (CGP-35348) seizure activity. These findings suggest that the increased basal GABA levels observed in this animal model are not simply a consequence of seizure activity but may contribute to the initiation of absence seizures.  相似文献   

4.
Abstract: The present study was undertaken to explore how transient ischemia in rats alters cerebral metabolic capacity and how postischemic metabolism and blood flow are coupled during intense activation. After 6 h of recovery following transient forebrain ischemia 15 min in duration, bicuculline seizures were induced, and brains were frozen in situ after 0.5 or 5 min of seizure discharge. At these times, levels of labile tissue metabolites were measured, whereas the cerebral metabolic rate for oxygen (CMRO2) and cerebral blood flow (CBF) were measured after 5 min of seizure activity. After 6 h of recovery, and before seizures, animals had a 40–50% reduction in CMRO2, and CBF. However, because CMRO2 rose threefold and CBF fivefold during seizures, CMRO2 and CBF during seizures were similar in control and postischemic rats. Changes in labile metabolites due to the preceding ischemia encompassed an increased phosphocreatine/ creatine ratio, as well as raised glucose and glycogen concentrations. Seizures gave rise to minimal metabolic perturbation, essentially comprising reduced glucose and glycogen contents and raised lactate concentrations. It is concluded that although transient ischemia leads to metabolic depression and a fall in CBF, the metabolic capacity of the tissue is retained, and drug-induced seizures lead to a coupled rise in metabolic rate and blood flow.  相似文献   

5.
Abstract— The levels of ATP, P-creatine, glucose, glycogen, lactate, glutamate and ammonia were measured in mouse brain after administration of the convulsive agent methionine sulphoximine (MSO). No changes were observed in ATP and P-creatine levels either before or during the seizures. Lactate levels were unchanged until the onset of seizures (4–5 hr) at which time the levels increased an average of 65 per cent. Glucose and glycogen levels increased progressively. Just before the onset of seizures the levels had increased 95 and 62 per cent, respectively. During the seizures both substances had increased a total of 130 per cent. Comparable changes were found in cerebral cortex, cerebellum and subcortical forebrain. Through the use of quantitative histochemical methods it was found that the greatest increases in glycogen occurred in layers I and III (layers II and IV were not analysed). Progressively smaller changes were found in layers V and VI and no increase at all was found in the subjacent white matter. Glucose, in contrast to glycogen, increased to about the same degree in all cerebral layers and in subjacent white matter. The increase in glycogen after MSO administration may be related to the fact that MSO also causes an increase in the ratio of brain to serum glucose levels. This would indicate that an increase in intracellular glucose had occurred. Ammonia levels were increased 300–400 per cent in both cerebrum and cerebellum. A time study in cerebellum showed that the increase begins early and reaches maximal levels long before the onset of seizures. Glutamate levels were reduced by small but statistically significant amounts in both cerebrum and cerebellum. Administration of methionine sulphoximine completely prevented seizures and the increase in lactate, but did not prevent the increases in glycogen and glucose. The rise in ammonia was reduced but not prevented. During 20 sec of complete ischaemia (decapitation) ATP, P-creatine and glucose fell somewhat more rapidly than normal in brain of animals undergoing MSO seizures. From the changes it was calculated that the metabolic rate had been increased about 20 per cent by the seizure. A new sensitive and specific enzymic method for determination of tissue ammonia is presented together with evised enzymic procedures for lactate and glutamate.  相似文献   

6.
Abstract: The effects of mild stress on nonoxidative glucose metabolism were studied in the brain of the freely moving rat. Extracellular lactate levels in the hippocampus and striatum were monitored at 2.5-min intervals with microdialysis coupled with an enzyme-based flow injection analysis system. Ten minutes of restraint stress led to a 235% increase in extracellular lactate levels in the striatum. A 5-min tail pinch caused an increase of 193% in the striatum and 170% in the hippocampus. Local application of tetrodotoxin in the striatum blocked the rise in lactate following tail pinch and inhibited the subsequent clearance of lactate from the extracellular fluid. Local application of the noncompetitive N -methyl- d -aspartate receptor antagonist MK-801 had no effect on the tail pinch-stimulated increase in lactate in the striatum. These results show that mild physiological stimulation can lead to a rapid increase in nonoxidative glucose metabolism in the brain.  相似文献   

7.
Abstract: As seizures in experimental models can be induced by the activation and suppressed by the inhibition of glutamate receptors, it is often proposed that a high extracellular glutamate level subsequent to excessive presynaptic release and/or altered glutamate uptake is epileptogenic. The purpose of this study was to ascertain the link between seizure activity and high extracellular glutamate. To assist the detection of any putative rise in extracellular glutamate during seizures, microdialysis was coupled to enzyme-amperometric detection of glutamate, which provides maximal sensitivity and time resolution. Electrical activity and field potential were also recorded through the dialysis membrane to confirm that epileptic activity was present at the sampling site. No increase in dialysate glutamate content was detected during picrotoxin-induced seizures, even when the K+ concentration in the perfusion medium was raised to 50% above that measured previously during paroxysmal activity. In addition, sustained inhibition of glutamate uptake by l - trans -pyrrolidine-2,4-dicarboxylate increased the extracellular glutamate level >20-fold but did not produce electrophysiological changes indicative of excessive excitation. These findings indicate that seizures are not necessarily accompanied by an increased extracellular glutamate level and that increased glutamatergic excitation in epilepsy may result from other abnormalities such as increased density of glutamate receptors, enhanced activation subsequent to reduced modulation, or sprouting of glutamatergic synapses.  相似文献   

8.
Neuroactive Amino Acids in Focally Epileptic Human Brain: A Review   总被引:3,自引:0,他引:3  
Studies of neuroactive amino acids and their regulatory enzymes in surgically excised focally epileptic human brain are reviewed. Concentrations of glutamate, aspartate and glycine are significantly increased in epileptogenic cerebral cortex. The activities of the enzymes, glutamate dehydrogenase and aspartate aminotransferase, involved in glutamate and aspartate metabolism are also increased. Polyamine synthesis is enhanced in epileptogenic cortex and may contribute to the activation of N-methyl-D-aspartate (NMDA) receptors. Nuclear magnetic resonance spectroscopy (NMRS) reveals that patients with poorly controlled complex partial seizures have a significant diminution in occipital lobe gamma aminobutyric acid (GABA) concentration. The activity of the enzyme GABA-aminotransaminase (GABA-T) which catalyzes GABA degredation is not altered in epileptogenic cortex. NMRS studies show that vigabatrin, a GABA-T inhibitor and effective antiepileptic, significantly increases brain GABA. Glutamate decarboxylase (GAD), responsible for GABA synthesis, is diminished in interneurons in discrete regions of epileptogenic cortex and hippocampus. In vivo microdialysis performed in epilepsy surgery patients provides measurements of extracellular amino acid levels during spontaneous seizures. Glutamate concentrations are higher in epileptic hippocampi and increase before seizure onset reaching potentially excitotoxic levels. Frontal or temporal cortical epileptogenic foci also release aspartate, glutamate and serine particularly during intense seizures or status epilepticus. GABA in contrast, exhibits a delayed and feeble rise in the epileptic hippocampus possibly due to a reduction in the number and/or efficiency of GABA transporters.  相似文献   

9.
Abstract– The correlations among clinical events, electrocorticogram, histology, size of focus, and biochemical changes were examined in a model of focal penicillin seizures in rats. Ten units of penicillin injected into the motor cortex were found to be the threshold dose for producing repetitive spike discharges. These were associated with synchronous contralateral muscle jerks which reached a peak intensity in 10 min and fell off rapidly in 45–90 min. The half-life of penicillin in the cortex was 15 min, with little diffusion from the site of injection. The size of the metabolic focus was determined by autoradiography with [2-14C]deoxyglucose and was 6.5 times larger than the diffusion of penicillin. Increased glucose utilization appeared in the focus and in cortical columns in the contralateral homo-typic cortex. Thirty times more penicillin (>300 units) was required to produce spikes with afterdischarge than to product spikes alone. Afterdischarges correlated with contralateral tonic-clonic seizures and occurred only after 1 h of exposure to penicillin. These lasted 10-45 s each and recurred over 3 to 4h. The size of the metabolic focus determined by [2-14C]deoxyglucose during afterdischarges was 4.6 times larger than the focus exhibiting spike discharges alone. Tissue substrates were measured in the seizure focus, homotypic ‘mirror’ cortex, and cortex remote from the focus in paralyzed ventilated animals. During repetitive spike discharge there was a fall in high energy compounds in the focus (phosphocreatine, 4.91 → 4.24 mmol/kg; ATP, 2.62 → 2.17 mmol/kg) and a rise in lactate (1.41 → 2.79 mmol/kg). Changes were similar but less intense in ‘mirror’ and remote cortex. During spikes with afterdischarge, changes in high energy compounds in the focus were of a similar magnitude (phosphocreatine, 4.91 → 3.86 mmol/kg; ATP, 2.62 → 2.46 mmol/kg) but there was a greater rise in lactate (1.41 → 6.32 mmol/kg) and a fall in glucose (2.38 → 1.81 mmol/kg). In contrast, changes in ‘mirror’ and remote cortex during afterdischarges showed an increase in high-energy compounds.  相似文献   

10.
A method to monitor extracellular glucose in freely moving rats, based on intracerebral microdialysis coupled to an enzyme reactor is described. The dialysate is continuously mixed with a solution containing the enzymes hexokinase and glucose-6-phosphate dehydrogenase, and the fluorescence of NADPH formed enables the on-line registration of extracellular glucose. The method is applied to monitor changes in extracellular brain glucose during the infusion of glucose, electrically induced seizure, immobilization stress, and repetitive hypoxia. After glucose loading or after seizure, hippocampus dialysate glucose concentration was increased transiently. During immobilization, there was a short-lasting decrease and, thereafter, an increase in the extracellular hippocampus glucose. During repetitive hypoxia in rats with a unilaterally occluded carotid artery, the content of glucose of striatal dialysates followed closely changes in blood pressure. These results illustrate the usefulness of the method in studying changes in brain glucose concentrations under pathological and physiological conditions.  相似文献   

11.
Even though recent studies have suggested that seizures do not occur suddenly and that before a seizure there is a period with an increased probability of seizure occurrence, neurophysiological mechanisms of interictal and pre-seizure states are unknown. The ability of mathematical methods to provide much more sensitive tools for the detection of subtle changes in the electrical activity of the brain gives promise that electrophysiological markers of enhanced seizure susceptibility can be found even during interictal periods when EEG of epilepsy patients often looks 'normal'. Previously, we demonstrated in animals that hippocampal and neocortical gamma-band rhythms (30-100 Hz) intensify long before seizures caused by systemic infusion of kainic acid. Other studies in recent years have also drawn attention to the fast activity (>30 Hz) as a possible marker of epileptogenic tissue. The current study quantified gamma-band activity during interictal periods and seizures in intracranial EEG (iEEG) in 5 patients implanted with subdural grids/intracranial electrodes during their pre-surgical evaluation. In all our patients, we found distinctive (abnormal) bursts of gamma activity with a 3 to 100 fold increase in power at gamma frequencies with respect to selected by clinicians, quiescent, artifact-free, 7-20 min "normal" background (interictal) iEEG epochs 1 to 14 hours prior to seizures. Increases in gamma activity were largest in those channels which later displayed the most intensive electrographic seizure discharges. Moreover, location of gamma-band bursts correlated (with high specificity, 96.4% and sensitivity, 83.8%) with seizure onset zone (SOZ) determined by clinicians. Spatial localization of interictal gamma rhythms within SOZ suggests that the persistent presence of abnormally intensified gamma rhythms in the EEG may be an important tool for focus localization and possibly a determinant of epileptogenesis.  相似文献   

12.
Selected energy reserves, glycolytic intermediates and citric acid cycle intermediates were measured in the cerebral cortex, thalamus, brain stem, cerebellum and spinal cord of susceptible mice during audiogenic seizures. Changes in energy reserves (ATP, phosphocreatine and glucose) differed strikingly in extent and temporal pattern from region to region. The audiogenic seizure produced a transient, large decrease in thalamic energy reserves during the early, pretonic phase of the seizure. Less extensive decreases were observed in brain stem and spinal cord; but in these latter regions the changes persisted throughout the pretonic and tonic phases of the seizures. In cerebellum there was a biphasic decrease in energy reserves; a small decrease was observed immediately after the sound stimulus and a second much greater decrease was observed during the tonic phase of the seizure. No change in energy reserves was observed in cerebral cortex. Changes in glycolytic intermediates (glucose 6-phosphate, fructose diphosphate, pyruvate and lactate) also varied from region to region in response to the decreases in energy reserves. In contrast, changes in the two citric acid cycle intermediates, α-oxoglutarate and malate, were essentially the same in all regions studied. α-Oxoglutarate decreased during the tonic phase of the seizure and rose during recovery. Malate remained at control levels throughout the seizure and then slowly increased. These findings are interpreted as indicating regional variations in nueronal activity during audiogenic seizures. During the period when clinical seizure activity is apparent neuronal activity increases in the subcortical regions. This is reflected by an increase in energy utilization and an increase in glycolytic flux in these areas. However, a concomitant increase in citric acid cycle flux does not seem to occur during this period. Citric acid cycle flux does appear to increase after the seizure is over.  相似文献   

13.
Extracellular amino acid levels in the rat piriform cortex, an area highly susceptible to seizure-induced neuropathology, were determined by means of intracranial microdialysis. Seizures were induced by systemic administration of either soman (O-1,2,2-trimethylpropyl methylphosphonofluoridate), a potent inhibitor of acetylcholinesterase, or the excitotoxin kainic acid. Extracellular glutamate levels increased in animals with seizures shortly after administration of either convulsant, but this change was statistically significant only in the case of soman-treated animals. Extracellular taurine levels increased markedly, reaching two- and fourfold baseline levels during the second hour of soman- and kainic acid-induced seizures, respectively. Taurine levels did not increase in the subpopulation of soman-treated animals without seizures, a finding indicating that elevation of extracellular taurine level is seizure related. Thus, we propose that taurine efflux may be a physiological cellular response to neuronal changes produced by excitotoxic chemicals, either directly or as a consequence of seizures.  相似文献   

14.
Despite successful use of the ketogenic diet (KD) for the treatment of drug-resistant epilepsy, its mechanism of action is unclear. After KD-feeding, increased plasma D-beta-hydroxybutyrate (BHB) levels appear to be important for protection against seizures. We hypothesized that the KD leads to metabolic changes in the brain, which are reflected in the hippocampal extracellular fluid (hECF). CD1 mice were fed control or KD for 2-3 weeks since weaning. In vivo microdialysis of hECF was used to measure the levels of glucose, lactate, as well as BHB under basal conditions and during 30 min stimulation with 60 mM K(+), which was retrodialysed. The hECF BHB concentration in KD-fed mice was determined as 43.4±10.1 μM using the zero-flow method and 50.7±5.5 μM based on in vitro recovery. The total BHB concentration in brain homogenate from KD-fed mice was 180 nmol/g. The intracellular BHB concentration is therefore estimated to be about 3-fold higher than the extracellular level, which suggests that BHB in adolescent mouse brains may not be quickly metabolized. The basal hECF glucose concentration was 30% lower in KD-fed mice, indicating that glucose may be less important as an energy source. Lactate levels were similar in control and KD-fed mice. High potassium stimulation elevated lactate by 3-3.5-fold and decreased glucose by 40-50% in both diet groups, consistent with similar anaerobic and aerobic metabolism in both diet groups during high hippocampal activity. Overall, these data (1) defined the BHB concentration in the hippocampal extracellular fluid in KD-fed mice and (2) showed lower glucose metabolism compared to control diet-fed mice. This work will now enable other researchers to mimic the hippocampal extracellular environment in experiments aimed at deciphering the mechanisms of the KD.  相似文献   

15.
Abstract: A successfully developed enzyme-based lactate microsensor with rapid response time allows the direct and continuous in vivo measurement of lactic acid concentration with high temporal resolution in brain extracellular fluid. The fluctuations coupled to neuronal activity in extracellular lactate concentration were explored in the dentate gyrus of the hippocampus of the rat brain after electrical stimulation of the perforant pathway. Extracellular glucose and oxygen levels were also detected simultaneously by coimplantation of a fast-response glucose sensor and an oxygen electrode, to provide novel information of trafficking of energy substances in real time related to local neuronal activity. The results first give a comprehensive picture of complementary energy supply and use of lactate and glucose in the intact brain tissue. In response to acute neuronal activation, the brain tissue shifts immediately to significant energy supply by lactate. A local temporary fuel "reservoir" is established behind the blood-brain barrier, evidenced by increased extracellular lactate concentration. The pool can be depleted rapidly, up to 28% in 10–12 s, by massive, acute neuronal use after stimulation and can be replenished in ∼20 s. Glutamate-stimulated astrocytic glycolysis and the increase of regional blood flow may regulate the lactate concentration of the pool in different time scales to maintain local energy homeostasis.  相似文献   

16.
We used northern and western blotting to measure the quantity of glutamate and GABA transporters mRNA and their proteins within the hippocampal tissue of rats with epileptogenesis. Chronic seizures were induced by amygdalar injection of kainic acid 60 days before death. We found that expression of the mRNA and protein of the glial glutamate transporters GLAST and GLT-1 were down-regulated in the kainic acid-administered group. In contrast, EAAC-1 and GAT-3 mRNA and their proteins were increased, while GAT-1 mRNA and protein were not changed. We performed in vivo microdialysis in the freely moving state. During the interictal state, the extracellular glutamate concentration was increased, whereas the GABA level was decreased in the kainic acid group. Following potassium-induced depolarization, glutamate overflow was higher and the recovery time to the basal release was prolonged in the kainic acid group relative to controls. Our data suggest that epileptogenesis in rats with kainic acid-induced chronic seizures is associated with the collapse of extracellular glutamate regulation caused by both molecular down-regulation and functional failure of glutamate transport.  相似文献   

17.
Abstract: The aim of this study was to evaluate the influence of perfusion media with different glucose concentrations on dialysate levels of lactate, pyruvate, aspartate (Asp), and glutamate (Glu) under basal and hypoxic conditions in rat brain neocortex. Intracerebral microdialysis was performed with the rat under general anesthesia using bilateral probes (o.d. 0.3 mm; membrane length, 2 mm) perfused with artificial CSF containing 0.0 and 3.0 m M glucose, respectively. Basal dialysate levels were obtained 2 h after probe implantation in artificially ventilated animals. Dialysate levels of glucose were also measured for the two different perfusion fluids. The mean absolute extracellular concentration of glucose was estimated by a modification of the no-net-flux method to be 3.3 mmol/L, corresponding to an average in vivo recovery of 6% for glucose. Hypoxia was induced by lowering the inspired oxygen concentration to 3%. Hypoxia caused a disturbance of cortical electrical activity, evidenced by slower frequency and lower amplitudes on the electroencephalogram compared with prehypoxic conditions. This was associated with significant elevations of lactate, Asp, and Glu levels. There were no statistically significant differences in dialysate metabolite levels between the two perfusion fluids, during either normal or hypoxic conditions. We conclude that microdialysis with glucose-free perfusion fluid does not drain brain extracellular glucose in anesthetized rats to the extent that the dialysate lactate, pyruvate, Asp, and Glu levels during basal or hypoxic conditions are altered.  相似文献   

18.
Our previous studies have shown a local decrease in glutamate and aspartate levels during seizures, induced by picrotoxin microdialysis in the hippocampus of chronic freely moving rats. In this paper, we study the effect of continuous hippocampal microperfusion of the NMDA, AMPA and kainate glutamate receptor inhibitors 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine (MK-801); 6,7-dinitroquinoxaline-2,3-dione (DNQX), and 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). We also examine the action of L(-)-threo-3-hydroxyaspartic acid (THA), a glutamate and aspartate reuptake blocker, on the modification of extracellular glutamate and aspartate levels induced by picrotoxin, using the microdialysis method in freely moving rats. We found that changes in extracellular hippocampal concentrations in both amino acids are prevented by NMDA, AMPA and kainate receptor inhibitors. Seizures elicited under DNQX also induce a transient increase in aspartate extracellular levels coincident with seizure time. L(-)-threo-3-hydroxyaspartic acid increased the basal extracellular concentrations of both amino acids, but did not prevent the seizure-related decrease. Our results suggest that glutamate, the major neurotransmitter at the synaptic level, may also play an important role in non-synaptic transmission during seizures.  相似文献   

19.
Abstract: Brain glucose metabolism was studied in paralyzed, ventilated rats given electroconvulsive shock (ECS) under normocapnic and hypercapnic conditions. Brains were obtained with a freeze-blowing apparatus. Rates of glucose utilization were determined with [2-14C]glucose and[3H]deoxyglucose as tracers. In normocapnic rats, ECS caused a large increase in the rate of glycolysis to 5–6 μmol/g/min. Brain lactate levels increased three- to fourfold. The stimulation of glucose metabolism was reflected in decreased brain glucose 6-phosphate concentration as early as 2–3 s after ECS. There were significant decreases in brain glucose and glycogen levels at 20 and 30 s after ECS. The decreases in endogenous brain glucose accounted for most of the increases in glucose utilization measured isotopically, implying that influx of glucose from blood into brain did not increase greatly over these time periods. Animals made hypercapnic by respiration with 10% CO2 for 2 min prior to ECS were different in their metabolic responses to ECS in several ways. The increases in glycolyt-ic rate and lactate content of brain were half of those found in normocapnic rats. Brain glycogen and glucose concentrations did not change significantly in the hypercapnic rats during seizure activity. Thus, hypercapnia lessened the stimulation of glycolysis caused by ECS, but increased net influx of glucose from blood to brain. The mechanisms of these effects of hypercapnia are uncertain, but it is postulated that the effect on glycolytic activity is due to the acidosis and that the effect on glucose transport is due to an increase in capillary surface area.  相似文献   

20.
Cortical and hippocampal hypersynchrony of neuronal networks seems to be an early event in Alzheimer’s disease pathogenesis. Many mouse models of the disease also present neuronal network hypersynchrony, as evidenced by higher susceptibility to pharmacologically-induced seizures, electroencephalographic seizures accompanied by spontaneous interictal spikes and expression of markers of chronic seizures such as neuropeptide Y ectopic expression in mossy fibers. This network hypersynchrony is thought to contribute to memory deficits, but whether it precedes the onset of memory deficits or not in mouse models remains unknown. The earliest memory impairments in the Tg2576 mouse model of Alzheimer’s disease have been observed at 3 months of age. We thus assessed network hypersynchrony in Tg2576 and non-transgenic male mice at 1.5, 3 and 6 months of age. As soon as 1.5 months of age, Tg2576 mice presented higher seizure susceptibility to systemic injection of a GABAA receptor antagonist. They also displayed spontaneous interictal spikes on EEG recordings. Some Tg2576 mice presented hippocampal ectopic expression of neuropeptide Y which incidence seems to increase with age among the Tg2576 population. Our data reveal that network hypersynchrony appears very early in Tg2576 mice, before any demonstrated memory impairments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号