首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
We report the isolation of a cDNA clone providing the first and complete sequence of mouse 72-kDa type IV collagenase. The clone contains 2800 nucleotides with a 1986-nucleotide open reading frame coding for 662 amino acids. The amino acid sequence includes a 29-residue signal peptide, an 80-residue propeptide, and a 553-residue enzyme proper. The sequence identity between the mouse and human enzymes is 96% with all cysteine residues conserved. The carboxyl-terminal domain of the mouse enzyme contains two more residues than the human enzyme. Northern hybridization analysis revealed considerable expression of the enzyme gene in newborn mouse lung, heart, kidney, and psoas muscle tissues, whereas only weak or no signals were observed in liver, spleen, and brain. Expression of the gene was substantially reduced in the same tissues of 3-month-old mice. In situ hybridization analysis of 72-kDa type IV collagenase expression in 10-15-day-old mouse embryos showed that the gene was intensely expressed in mesenchymal cells. Brain and surface ectoderm were completely negative. The epithelial tissue component of developing organs was negative with the exception of salivary gland. Although the expression varied somewhat between different mesenchymal tissues, no temporal or spatial changes could be associated with the advancement of epithelial branching morphogenesis. These findings together with our previous data on the expression of 72-kDa type IV collagenase in human tumors indicate that this enzyme has some very specific roles both in the physiological and pathological degradation of extracellular matrix. Furthermore, it has become clear that the closely related 92-kDa type IV collagenase differs completely with respect to expression pattern as well as gene regulation. The mouse cDNA clones reported in this study may provide important tools unraveling the actual roles of these enzymes in vivo.  相似文献   

8.
9.
In order for T cells to exit the circulatory system, traverse the endothelial basement membrane, and arrive in target tissues, these cells must attach to and degrade basement membrane proteins. 12-O-tetradecanoylphorbol-13-acetate (TPA) has been shown to stimulate lymphoid cell adhesion to basement membrane components. We have used TPA to study the ability of human lymphoid cells to secrete type IV collagenases, enzymes capable of degrading basement membrane proteins. Here, we found that human primary T cells and H-9 lymphoid cells synthesize the 92 kDa type IV collagenase (gelatinase B) and TPA stimulates the synthesis and secretion of this protease. Peak TPA-stimulated gelatinase B secretion and mRNA accumulation were observed 9 hours after TPA treatment, while the peak adhesion to type IV collagen was observed only 3 hours after TPA treatment. The protein kinase C inhibitor, H-7, inhibited TPA-stimulated gelatinase B secretion. Both the primary T cells and H-9 lymphoid cells also expressed the mRNA for the tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that TPA - stimulated lymphoid cells adhere to type IV collagen and subsequently synthesize and secrete gelatinase B and TIMP-1. We conclude that lymphoid cell extravasation may involve cellular employment of adhesion mechanisms prior to degradation of the matrix, which is similar to the process of extravasation used by metastatic cells. © 1993 Wiley-Liss, Inc.  相似文献   

10.
《The Journal of cell biology》1994,124(6):1091-1102
cDNA clones for murine 92 kD type IV collagenase (gelatinase B) were generated for the determination of its primary structure and for analysis of temporal and spatial expression in vivo. The mouse enzyme has 72% sequence identity with the human counterpart, the major difference being the presence of a 16-residue segment absent from the human enzyme. In situ hybridization analyses of embryonic and postnatal mouse tissues revealed intense signals in cells of the osteoclast cell lineage. Clear expression above background was not observed in macrophages, polymorphonuclear leukocytes, monocytes, or epithelial cells which have been shown to express the gene in vitro in cell cultures. Expression of the gene was first observed at early stage of cartilage and tooth development at E13, where signals were seen transiently in surrounding mesenchymal cells. At later developmental stages and postnatally strong expression was seen in large cells at the surface of bones. These cells were presumably osteoclasts as their location correlated with that of TRAP positive cells. Signals above background were not observed in a number of other tissues studied. The results represent the first demonstration of a highly osteoclast specific extracellular proteinase. The results suggest that during normal development of embryonic organs the 92-kD type IV collagenase does not have a major role in basement membrane degradation, but is rather mainly used for the turnover of bone matrix, possibly as a gelatinase required for the removal of denatured collagen fragments (gelatin) generated by interstitial collagenase.  相似文献   

11.
Matrix metalloproteinase 9 (MMP-9) has been purified as an inactive zymogen of M(r) 92,000 (proMMP-9) from the culture medium of HT 1080 human fibrosarcoma cells. The NH2-terminal sequence of proMMP-9 is Ala-Pro-Arg-Gln-Arg-Gln-Ser-Thr-Leu-Val-Leu-Phe-Pro, which is identical to that of the 92-kDa type IV collagenase/gelatinase. The zymogen can be activated by 4-aminophenylmercuric acetate, yielding an intermediate form of M(r) 83,000 and an active species of M(r) 67,000, the second of which has a new NH2 terminus of Met-Arg-Thr-Pro-Arg-(Cys)-Gly-Val-Pro-Asp-Leu-Gly-Arg-Phe-Gln-Thr- Phe-Glu. Immunoblot analyses demonstrate that this activation process is achieved by sequential processing of both NH2- and COOH-terminal peptides. TIMP-1 complexed with proMMP-9 inhibits the conversion of the intermediate form to the active species of M(r) 67,000. The proenzyme is fully activated by cathepsin G, trypsin, alpha-chymotrypsin, and MMP-3 (stromelysin 1) but not by plasmin, leukocyte elastase, plasma kallikrein, thrombin, or MMP-1 (tissue collagenase). During the activation by MMP-3, proMMP-9 is converted to an active species of M(r) 64,000 that lacks both NH2- and COOH-terminal peptides. In addition, HOCl partially activates the zymogen by reacting with an intermediate species of M(r) 83,000. The enzyme degrades type I gelatin rapidly and also cleaves native collagens including alpha 2 chain of type I collagen, collagen types III, IV, and V at undenaturing temperatures. These results indicate that MMP-9 has different activation mechanisms and substrate specificity from those of MMP-2 (72-kDa gelatinase/type IV collagenase).  相似文献   

12.
The synthesis of an 88-kDa gelatinolytic enzyme, identified as a zymogen of matrix metalloproteinase (proMMP)-9, was induced in the primary culture of rabbit articular chondrocytes by cotreatment with recombinant interleukin 1 beta (rIL-1 beta) and the protein kinase C (PKC) agonists, phorbol 12,13-dibutyrate (PDBu) or mezerein. Negligible 88-kDa gelatinolytic activity was produced by unstimulated cells or cells treated with a PKC activator alone at concentrations up to 100 ng/ml, and only a modest induction occurred with rIL-1 beta alone at concentrations of 1-100 ng/ml. However, when these cells were treated with a PKC activator in the presence of IL-1 beta (1 ng/ml), induction was striking, with enzymic activity detectable at a concentration as low as 1 ng/ml of mezerein or 10 ng/ml of PDBu. Rabbit chondrocytes in culture constitutively produced the zymogen of MMP-2 (proMMP-2) and its production was not altered by treatment with IL-1 beta or PKC agonists alone or in combination. Recombinant tumor necrosis factor alpha (rTNF alpha) did not substitute for IL-1 beta in inducing proMMP-9 in the presence of PKC activators, nor was the combination of IL-1 beta or TNF alpha alone effective. These data indicate that rabbit articular chondrocytes have a potential to synthesize and secrete proMMP-9 under certain biological and pathological conditions but that the expression of proMMP-9 is differently regulated from that of other MMPs.  相似文献   

13.
Chicken gizzard smooth muscle contains a highly abundant protein (SM22) with an apparent Mr on sodium dodecyl sulfate-polyacrylamide electrophoretic gels of 23,000. The ratio of actin:SM22:tropomyosin in this tissue is estimated to be 6.5(+/- 0.8):2.0(+/- 0.2):1.0. At least three isoelectric isoforms are present in ratios of alpha:beta:gamma of 14:5:1 with alpha the most basic and gamma the most acidic. A method for the purification of SM22 and partial separation of its isoforms is described. Amino acid analyses of purified alpha and beta demonstrate the presence of 1 and 2 half-cystines, respectively, and a lower content of basic amino acids in beta. A value of 22,000 for the Mr of alpha estimated by sedimentation equilibrium indicated its presence as a monomer at physiological ionic strengths. Estimates of the translational frictional coefficient (f/fmin) of alpha calculated from its Stokes radius (25.5 A) and Mr were consistent with its existence as a moderately asymmetric globular protein. Calculations based on its far-ultraviolet CD spectrum provided values of 37% alpha-helix, 31% beta-sheet, 5% beta-turn, and 27% random coil. SM22 was shown not to share functional properties with several proteins of similar Mr and isoelectric point such as myokinase, brain 23-kDa protein, and troponin I. We conclude that it is a novel protein not previously isolated or characterized from any tissue.  相似文献   

14.
The human 72-kDa (CLG4A) and 92-kDa (CLG4B) type IV collagenases contain a domain consisting of three contiguous copies of the fibronectin (FN)-derived type II homology unit (T2HU), T2HU-1, T2HU-2, and T2HU-3. To investigate the functional role of this domain, we have constructed plasmids expressing beta-galactosidase fusion proteins with one or more of the CLG4B-derived T2HU. The gelatin binding assays demonstrate that a single copy of T2HU-2 renders beta-galactosidase capable of binding gelatin. The three repeats, however, differ dramatically in their capacity to bind gelatin, with T2HU-1 and T2HU-3 having significantly less binding activity than T2HU-2. Using alanine scanning mutagenesis we have defined the amino acid residues (Arg307, Asp309, Asn319, Tyr320, Asp323) that are critical for gelatin binding of T2HU-2. The low gelatin binding of T2HU-1 compared to T2HU-2 was traced to the non-conserved residues Ala228-Ala and Leu253-Pro. The results suggest that the gelatin binding of the type IV collagenase proenzyme is mediated by the FN-like domain, although the presence of another gelatin-binding site cannot be excluded. The FN domain-mediated binding, however, is not a rate-limiting step in the hydrolysis of gelatin by the enzyme.  相似文献   

15.
The 72- and 92-kDa type IV collagenases are members of a group of secreted zinc metalloproteases. Two members of this family, collagenase and stromelysin, have previously been localized to the long arm of chromosome 11. Here we assign both of the two type IV collagenase genes to human chromosome 16. By sequencing, the 72-kDa gene is shown to consist of 13 exons, 3 more than have been reported for the other members of this gene family. The extra exons encode the amino acids of the fibronectin-like domain which has so far been found in only the 72- and 92-kDa type IV collagenase. The evolutionary relationship among the members of this gene family is discussed.  相似文献   

16.
Activation of human monocytes results in the production of interstitial collagenase through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. Inasmuch as interleukin 4 (IL-4) has been shown to inhibit PGE2 synthesis by monocytes, we examined the effect of IL-4 on the production of human monocyte interstitial collagenase. Additionally, we also assessed the effect of IL-4 on the production of 92-kDa type IV collagenase/gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) by monocytes. The inhibition of PGE2 synthesis by IL-4 resulted in decreased interstitial collagenase protein and activity that could be restored by exogenous PGE2 or dibutyryl cyclic AMP (Bt2cAMP). IL-4 also suppressed ConA-stimulated 92-kDa type IV collagenase/gelatinase protein and zymogram enzyme activity that could be reversed by exogenous PGE2 or Bt2cAMP. Moreover, indomethacin suppressed the ConA-induced production of 92-kDa type IV collagenase/gelatinase. These data demonstrate that, like monocyte interstitial collagenase, the conA-inducible monocyte 92-kDa type IV collagenase/gelatinase is regulated through a PGE2-mediated cAMP-dependent pathway. In contrast to ConA stimulation, unstimulated monocytes released low levels of 92-kDa type IV collagenase/gelatinase that were not affected by IL-4, PGE2, or Bt2cAMP, indicating that basal production of this enzyme is PGE2-cAMP independent. IL-4 inhibition of both collagenases was not a result of increased TIMP expression since Western analysis of 28.5-kDa TIMP-1 revealed that IL-4 did not alter the increased TIMP-1 protein in response to ConA. These data indicate that IL-4 may function in natural host regulation of connective tissue damage by monocytes.  相似文献   

17.
The synthesis of an 88-kDa gelatinolytic enzyme, identified as a zymogen of matrix metalloproteinase (proMMP)-9, was induced in the primary culture of rabbit articular chondrocytes by cotreatment with recombinant interleukin 1β (rIL-1β) and the protein kinase C (PKC) agonists, phorbol 12,13-dibutyrate (PDBu) or mezerein. Negligible 88-kDa gelatinolytic activity was produced by unstimulated cells or cells treated with a PKC activator alone at concentrations up to 100 ng/ml, and only a modest induction occurred with rIL-1β alone at concentrations of 1–100 ng/ml. However, when these cells were treated with a PKC activator in the presence of IL-1β (1 ng/ml), induction was striking, with enzymic activity detectable at a concentration as low as 1 ng/ml of mezerein or 10 ng/ml of PDBu. Rabbit chondrocytes in culture constitutively produced the zymogen of MMP-2 (proMMP-2) and its production was not altered by treatment with IL-1β or PKC agonists alone or in combination. Recombinant tumor necrosis factor α (rTNFα) did not substitute for IL-1β in inducing proMMP-9 in the presence of PKC activators, nor was the combination of IL-1β or TNFα alone effective. These data indicate that rabbit articular chondrocytes have a potential to synthesize and secrete proMMP-9 under certain biological and pathological conditions but that the expression of proMMP-9 is differently regulated from that of other MMPs.  相似文献   

18.
We have reported that SV40-transformed human lung fibroblasts secrete a 92-kDa metalloprotease which is not detectable in the parental cell line IMR-90. We now present the complete structure of this enzyme along with the evidence that it is identical to the 92-kDa metalloprotease secreted by normal human alveolar macrophages, phorbol ester-differentiated monocytic leukemia U937 cells, fibrosarcoma HT1080 cells, and cultured human keratinocytes. A similar, perhaps identical, enzyme can be released by polymorphonuclear cells. The preproenzyme is synthesized as a polypeptide of predicted Mr 78,426 containing a 19 amino-acid-long signal peptide and secreted as a single 92,000 glycosylated proenzyme. The purified proenzyme complexes noncovalently with the tissue inhibitor of metalloproteases (TIMP) and can be activated by organomercurials. Activation with phenylmercuric chloride results in removal of 73 amino acids from the NH2 terminus of the proenzyme, yielding an active form capable of digesting native types IV and V collagen. The in vitro substrate specificity of the enzyme using these substrates was indistinguishable from that of the 72-kDa type IV collagenase. The 92-kDa type IV collagenase consists of five domains; the amino-terminal and zinc-binding domains shared by all members of the secreted metalloprotease gene family, the collagen-binding fibronectin-like domain also present in the 72-kDa type IV collagenase, a carboxyl-terminal hemopexin-like domain shared by all known enzymes of this family with the exception of PUMP-1, and a unique 54-amino-acid-long proline-rich domain homologous to the alpha 2 chain of type V collagen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号