首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antitumor nitrogen mustards, such as bis(2-chloroethyl)methylamine (mechlorethamine), are useful chemotherapeutic agents with a long history of clinical application. The antitumor effects of nitrogen mustards are attributed to their ability to induce DNA-DNA and DNA-protein cross-links (DPCs) that block DNA replication. In the present work, a mass spectrometry-based methodology was employed to characterize in vivo DNA-protein cross-linking following treatment of human fibrosarcoma (HT1080) cells with cytotoxic concentrations of mechlorethamine. A combination of mass spectrometry-based proteomics and immunological detection was used to identify 38 nuclear proteins that were covalently cross-linked to chromosomal DNA following treatment with mechlorethamine. Isotope dilution HPLC-ESI(+)-MS/MS analysis of total proteolytic digests revealed a concentration-dependent formation of N-[2-(S-cysteinyl)ethyl]-N-[2-(guan-7-yl)ethyl]methylamine (Cys-N7G-EMA) conjugates, indicating that mechlorethamine cross-links cysteine thiols within proteins to N-7 positions of guanine in DNA.  相似文献   

2.
Matrix metalloproteinase 9 (MMP-9) has been purified as an inactive zymogen of M(r) 92,000 (proMMP-9) from the culture medium of HT 1080 human fibrosarcoma cells. The NH2-terminal sequence of proMMP-9 is Ala-Pro-Arg-Gln-Arg-Gln-Ser-Thr-Leu-Val-Leu-Phe-Pro, which is identical to that of the 92-kDa type IV collagenase/gelatinase. The zymogen can be activated by 4-aminophenylmercuric acetate, yielding an intermediate form of M(r) 83,000 and an active species of M(r) 67,000, the second of which has a new NH2 terminus of Met-Arg-Thr-Pro-Arg-(Cys)-Gly-Val-Pro-Asp-Leu-Gly-Arg-Phe-Gln-Thr- Phe-Glu. Immunoblot analyses demonstrate that this activation process is achieved by sequential processing of both NH2- and COOH-terminal peptides. TIMP-1 complexed with proMMP-9 inhibits the conversion of the intermediate form to the active species of M(r) 67,000. The proenzyme is fully activated by cathepsin G, trypsin, alpha-chymotrypsin, and MMP-3 (stromelysin 1) but not by plasmin, leukocyte elastase, plasma kallikrein, thrombin, or MMP-1 (tissue collagenase). During the activation by MMP-3, proMMP-9 is converted to an active species of M(r) 64,000 that lacks both NH2- and COOH-terminal peptides. In addition, HOCl partially activates the zymogen by reacting with an intermediate species of M(r) 83,000. The enzyme degrades type I gelatin rapidly and also cleaves native collagens including alpha 2 chain of type I collagen, collagen types III, IV, and V at undenaturing temperatures. These results indicate that MMP-9 has different activation mechanisms and substrate specificity from those of MMP-2 (72-kDa gelatinase/type IV collagenase).  相似文献   

3.
Sun C  Wang Z  Zheng Q  Zhang H 《Phytomedicine》2012,19(3-4):355-363
Oxidative stress plays an important role in tumorigenesis and metastasis. Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Here we investigated the inhibitory effects of salidroside on tumor metastasis in human fibrosarcoma HT1080 cells in vitro. The results indicated that salidroside significantly reduced wound closure areas of HT1080 cells, inhibited HT1080 cells invasion into Matrigel-coated membranes, suppressed matrix metalloproteinases (MMP-2 and MMP-9) activity, and increased tissue inhibitor of metalloproteinase-2 (TIMP-2) expression in a dose-dependent manner in HT1080 cells. Salidroside treatment upregulated the E-cadherin expression, while downregulated the expression of β1-integrin. As an antioxidant, salidroside inhibited the intracellular reactive oxygen species (ROS) formation in a dose-dependent manner. The results also showed that salidroside could inhibit the activation of protein kinase C (PKC) and the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in a dose-dependent manner. In conclusion, these results suggest that salidroside inhibits tumor cells metastasis, which may due to its interfere in the intracellular excess ROS thereby down-regulated the ROS-PKC-ERK1/2 signaling pathway.  相似文献   

4.
5.
6.
It has been demonstrated that hydrogen peroxide (H(2)O(2)) is directly associated with elevated matrix metalloproteinase-2 (MMP-2) expression in several cell lines. Electrochemically reduced water (ERW), produced near the cathode during electrolysis, and scavenges intracellular H(2)O(2) in human fibrosarcoma HT1080 cells. RT-PCR and zymography analyses revealed that when HT1080 cells were treated with ERW, the gene expression of MMP-2 and membrane type 1 MMP and activation of MMP-2 was repressed, resulting in decreased invasion of the cells into matrigel. ERW also inhibited H(2)O(2)-induced MMP-2 upregulation. To investigate signal transduction involved in MMP-2 downregulation, mitogen-activated protein kinase (MAPK)-specific inhibitors, SB203580 (p38 MAPK inhibitor), PD98059 (MAPK/extracellular regulated kinase kinase 1 inhibitor) and c-Jun NH(2)-terminal kinase inhibitor II, were used to block the MAPK signal cascade. MMP-2 gene expression was only inhibited by SB203580 treatment, suggesting a pivotal role of p38 MAPK in regulation of MMP-2 gene expression. Western blot analysis showed that ERW downregulated the phosphorylation of p38 both in H(2)O(2)-treated and untreated HT1080 cells. These results indicate that the inhibitory effect of ERW on tumor invasion is due to, at least in part, its antioxidative effect.  相似文献   

7.
H Paterson  B Reeves  R Brown  A Hall  M Furth  J Bos  P Jones  C Marshall 《Cell》1987,51(5):803-812
To investigate whether the activated N-ras oncogene of HT1080 human fibrosarcoma cells contributes to the expression of the transformed phenotype, we have isolated flat revertants. In two independent revertant lines, an increase in chromosomal ploidy occurred without a concomitant increase in the number of copies of the N-ras transforming allele. Immunoprecipitation confirms that the level of the mutant N-ras p21 gene product in the revertants is correspondingly lower than in HT1080. Analysis of sporadic tumors derived from the revertant cells reveals an increased dosage of the transforming allele. The revertants also retransform after transfection of cloned activated ras oncogenes. These results imply direct participation of an N-ras oncogene in maintaining the transformed phenotype of a human tumor cell line.  相似文献   

8.
Anchorage independence is an important hallmark of the transformation that correlates with tumorigenicity. We have isolated a variant clone of HT1080 human fibrosarcoma cells (cl-2) that is specifically defective in anchorage-independent growth. Interestingly, 10(-7) M dexamethasone (DEX) substantially rescued the anchorage-independent growth of cl-2 cells in semisolid culture. DEX also promoted the anchorage-independent growth of parental HT1080 cells. However, the agent had no effect on the anchorage-dependent growth of cl-2 and parental cells in ordinary liquid culture. Cell cycle analysis demonstrated that the population of G0/G1 cells increased, whereas that of S and G2/M cells decreased in growth-arrested cl-2 cells in suspension culture. However, such an effect of anchorage loss on cell cycle progression was alleviated by adding 10(-7) M DEX. In cl-2 cells in semisolid culture, DEX suppressed the expression of P27Kip1, whereas it stimulated the expression of cyclin A and hyperphosphorylated retinoblastoma (Rb) proteins. On the other hand, DEX had no effect on cyclin D1 and P21Cap1 expression. These effects of DEX, except for the suppression of P27Kip1, were blocked by an antimicrofilament drug, cytochalasin D. Our results suggest that the stimulation of anchorage-independent growth by DEX involves at least two regulatory mechanisms, i.e., one that leads to the suppression of P27Kip1 protein without requiring cytoskeletal integrity, and another that requires cytoskeletal integrity, leading to stimulation of cyclin A and hyperphosphorylation of Rb protein.  相似文献   

9.
Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.  相似文献   

10.
11.
It has been suggested that chronically hypoxic tumor cells may be more radiosensitive than acutely hypoxic or even aerobic cells. In the present study we have used the fact that chronically, but not acutely, hypoxic cells that are transformed with a vector containing an enhanced green fluorescent protein (EGFP) driven by a hypoxia-responsive promoter become green (high EGFP) at low oxygen concentrations and can be viably sorted from transplanted tumors in vitro. We showed that the fluorescence of HT 1080 human fibrosarcoma cells stably transfected with this vector increases constantly with decreasing O2 concentrations (<2%, longer than 1 h, half maximum approximately 0.2% for longer than 8 h), and that cells subjected to repeated cycles of hypoxia/reoxygenation (simulating acutely hypoxic cells) showed only background fluorescence. To test the radiosensitivity of acutely and chronically hypoxic cells in tumors, we isolated high-EGFP ("chronically hypoxic") and low-EGFP cells (containing both acutely hypoxic and aerobic cells) from HT 1080 xenograft tumors by fluorescence-activated cell sorting (FACS), immediately after in situ treatment with 20 Gy (ambient or clamped), and plated the cells to determine clonogenic survival in vitro. We found that the survival of high-EGFP cells after irradiation was not affected by clamping, suggesting that all, or almost all, of these cells were fully (chronically) hypoxic. Also, the survival of the low-EGFP cells irradiated under clamped conditions (acutely hypoxic cells) was not significantly different from that of the high-EGFR cells (chronically hypoxic) cells irradiated under nonclamped (or clamped) conditions. We therefore conclude that, at least in this tumor model, the radiation sensitivity of chronically hypoxic cells is similar to that of the acutely hypoxic cells.  相似文献   

12.
R Brown  C J Marshall  S G Pennie    A Hall 《The EMBO journal》1984,3(6):1321-1326
A full length N-ras gene has been cloned from both the human fibrosarcoma cell line HT1080 and from normal human DNA. N-ras isolated from HT1080 will efficiently induce morphological transformation of NIH/3T3 cells in a transfection assay, whereas N-ras isolated from normal human DNA has no effect on NIH/3T3 cells. The coding regions of the normal N-ras gene have been sequenced and the predicted amino acid sequence of the N-ras product is very similar to that of the c-Ha-ras1 and c-Ki-ras2 products. By making chimeric molecules between the two cloned genes the activating alteration in the HT1080 N-ras gene has been localised to a single base change that results in an amino acid alteration at position 61 of the p21 N-ras product.  相似文献   

13.
Summary We produced somatic cell hybrids between HT 1080-6TG human fibrosarcoma cells and either rat white blood cells (WBC) or cells directly derived from rat spleen. Karyologic and isozyme analyses of hybrid cells indicated that they preferentially lose rat chromosomes. Hypoxanthine-aminopterine thymidine-selected hybrid clones expressing rat hypoxanthine phosphoribosyltransferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), and phosphoglycerate kinase (PGK) and containing the rat X chromosome were counterselected in a medium containing 30 g/ml of 6-thioguanine. Concordant loss of the rat X chromosome and of the expression of rat HPRT and G6PD was observed in the hybrid clones.  相似文献   

14.
The effect of dexamethasone on the synthesis and degradation of type IV collagen was studied in human fibrosarcoma cells, HT-1080. A dexamethasone concentration as low as 0.1 microM markedly increased collagen synthesis in HT-1080 cells labelled with [14C]proline. The increase in type IV collagen synthesis was not specific, since total protein synthesis was also increased. Further studies indicated that part of the increase was due to an increase in the specific radioactivity of the intracellular proline pool, after dexamethasone treatment. In fact, with dexamethasone concentrations of 0.1-10 microM the relative collagen synthesis was decreased, indicating that synthesis of other protein was increased more than that of type IV collagen. This was also confirmed by measuring the relative amount of type IV collagen RNA by using recombinant plasmid cDNA specific for the human procollagen pro alpha l (IV) RNA. The results indicated that relative collagen synthesis and the relative amount of type IV collagen messenger RNA was decreased similarly, indicating that dexamethasone affected type IV collagen synthesis at the pre-translational level. The dexamethasone-induced effect on total protein and collagen synthesis was maximal after 12-24 h. Dexamethasone induced a marked accumulation of collagen into the cell layer, leading to diminished deposition of soluble collagen into the medium. Since bacterial-collagenase treatment of the cell layer drastically decreased the collagen content of the dexamethasone-treated cells, this indicates that dexamethasone caused an accumulation of collagen into the extracellular matrix of the cell layer. In contrast, the amount of fibronectin was markedly increased in the medium. Dexamethasone decreased the type IV collagen-degrading activity in HT-1080 cells. The HT-1080 cells contained glucocorticoid receptors, as demonstrated by two different methods: by a whole-cell binding assay and by using a cytosol-gel-filtration method. The number of specific binding sites was similar to that in human skin fibroblasts. In conclusion, glucocorticoids affect the metabolism of type IV collagen and fibronectin in HT-1080 cells, and, since these cells contain specific glucocorticoid receptors, the effects are apparently receptor-mediated.  相似文献   

15.
The junctional adhesion molecule (JAM) family is a key molecule in a process called transendothelial migration or diapedesis. Here, we report implications of JAM-C in cancer metastasis. We first determined the mRNA expression of JAMs in 19 kinds of cancer cell lines. JAM-C was expressed in most of tumors having potent metastatic properties. Especially in murine K-1735 melanoma cell lines, the highly metastatic sublines (M2 and X21) strongly expressed JAM-C when compared with the poorly metastatic ones (C-10 and C23). Next, we investigated the role of JAM-C in cancer metastasis by using human JAM-C (hJAM-C) gene-transfected HT1080 fibrosarcoma cells. In comparison with mock-transfected HT1080 cells, these cells showed a significant increase in the adhesion to various extracellular substrates and the invasion across a Matrigel-coated membrane. The knockdown of hJAM-C using small interfering RNA resulted in the suppression of both the adhesion and the invasion of HT1080 cells, suggesting that endogenous hJAM-C might be involved in tumor metastasis. Finally, we studied the role of hJAM-C in an in vivo experimental metastatic model. The results showed that the overexpression of hJAM-C in HT1080 cells significantly decreased the life spans of the tumorbearing mice. In contrast, the knockdown of hJAM-C in HT1080 cells suppressed the weight gain of the lungs with metastatic colonies. We conclude that the expression of JAM-C promotes metastasis by enhancing both the adhesion of cancer cells to extracellular matrices and the subsequent invasion.  相似文献   

16.
Ral promotes anchorage-independent growth of a human fibrosarcoma, HT1080   总被引:1,自引:0,他引:1  
Ral has been shown to act downstream of Ras oncoprotein. However, the role of Ral in Ras-induced cellular transformation has not been fully understood. To test the involvement of Ral in Ras-induced anchorage-independent growth, we ectopically expressed Ral mutants in HT1080 cells, whose ability to grow in the absence of anchorage depends on the oncogenic mutation of N-ras. Expression of an activated mutant of Ral resulted in enhanced growth of HT1080 cells in soft agar, whereas a dominant-negative mutant of Ral inhibited their anchorage-independent growth. Moreover, the activated Ral mutant decreased the amount of p27(Kip1) in the absence of adhesion, while the dominant-negative mutant increased it. These results suggest that Ral is involved in the Ras-dependent anchorage-independent growth of HT1080 cells by regulating p27(Kip1).  相似文献   

17.
We have developed a model system of human fibrosarcoma cell lines that do or do not possess and express an oncogenic mutant allele of N-ras. HT1080 cells contain an endogenous mutant allele of N-ras, whereas the derivative MCH603 cell line contains only wild-type N-ras. In an earlier study (S. Gupta et al., Mol. Cell. Biol. 20:9294-9306, 2000), we had shown that HT1080 cells produce rapidly growing, aggressive tumors in athymic nude mice, whereas MCH603 cells produced more slowly growing tumors and was termed weakly tumorigenic. An extensive analysis of the Ras signaling pathways (Raf, Rac1, and RhoA) provided evidence for a potential novel pathway that was critical for the aggressive tumorigenic phenotype and could be activated by elevated levels of constitutively active MEK. In this study we examined the role of phosphoinositide 3-kinase (PI 3-kinase) in the regulation of the transformed and aggressive tumorigenic phenotypes expressed in HT1080 cells. Both HT1080 (mutant N-ras) and MCH603 (wild-type N-ras) have similar levels of constitutively active Akt, a downstream target of activated PI 3-kinase. We find that both cell lines constitutively express platelet-derived growth factor (PDGF) and PDGF receptors. Transfection with tumor suppressor PTEN cDNA into HT1080 and constitutively active PI 3-kinase-CAAX cDNA into MCH603 cells, respectively, resulted in several interesting and novel observations. Activation of the PI 3-kinase/Akt pathway, including NF-kappaB, is not required for the aggressive tumorigenic phenotype in HT1080 cells. Activation of NF-kappaB is complex: in MCH603 cells it is mediated by Akt, whereas in HT1080 cells activation also involves other pathway(s) that are activated by mutant Ras. A threshold level of activation of PI 3-kinase is required in MCH603 cells before stimulatory cross talk to the RhoA, Rac1, and Raf pathways occurs, without a corresponding activation of Ras. The increased levels of activation seen were similar to those observed in HT1080 cells, except for Raf and MEK, which were more active than HT1080 levels. This cross talk results in conversion to the aggressive tumorigenic phenotype. This latter observation is consistent with our previous observation that overstimulation of the activity of endogenous members of Ras signaling pathways, activated MEK in particular, is a prerequisite for aggressive tumorigenic growth.  相似文献   

18.
We designed and synthesized a celecoxib derivative UTX-121 to enhance its anti-tumor activity. Similar to celecoxib, this compound could also inhibit matrix metalloproteinase (MMP)-9 activity. In addition, UTX-121 suppressed membrane-type 1 MMP (MT1-MMP)-mediated pro-MMP-2 activation by disturbing the cell surface expression of MT1-MMP. UTX-121 also impeded the glycosylation of cell surface proteins, resulting in the suppression of cell attachment to fibronectin. This inhibition by UTX-121 caused the reduction of fibronectin-stimulated focal adhesion kinase activation, Akt activation, and cell migration. Consequently, UTX-121 treatment significantly inhibited fibronectin-induced HT1080 cell invasion into the Matrigel. UTX-121 may be a potent lead compound that can be used to develop a novel anti-tumor drug.  相似文献   

19.
A 2D model was previously presented that describes the gliding motility of human fibrosarcoma cells. The model was based on the observation that adhesions are present only on the outer rim of the leading lamella of the semicircular cell. The present model describes the organization of adhesions and the cytoskeleton of migrating HT1080 fibrosarcoma and LX2 hepatic stellate cells in three dimensions. The migration assays were performed in a modified Boyden chamber using fibronectin, Matrigel, or collagen I as chemoattractants. The distribution of the adhesions was analyzed by confocal laser scanning microscope, and following decoration with heavy meromyosin, the organization of actin filaments was analyzed by electron microscopy. Double labeling was performed to study the relationship of the actin and vimentin filament network in the moving cells. Vinculin containing adhesions were observed only at the front of the cell in the form of a ring while passing through a filter pore of the Boyden chamber. Actin filaments were present only below the plasma membrane, except the very tip of the leading lamella. Vimentin intermediate filaments were localized around the cell nucleus behind the actin filament-rich lamella.

This paper describes a model of the organization of adhesions and the cytoskeleton of migrating cells in the Boyden chamber. The model is based on the observation that adhesions are present only at the leading edge of the cell. The results extend the earlier 2D model of cell locomotion into 3D.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号