首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kugrens  P.  Aguiar  R.  Clay  B.L.  & Lee  R.E. 《Journal of phycology》2000,36(S3):39-39
Given their rapid growth and nutrient assimilation rates, Porphyra spp. are good candidates for bioremediation. The production potential of two northeast U.S. Porphyra species currently in culture ( P. purpurea and P. umbilicalis ) was evaluated by measuring rates of photosynthesis (as O2 evolution) of samples grown at 20° C. Gametophytes of P. umbilicalis photosynthesized at rates that were 80% higher than those of P. purpurea over 5–20° C at both sub-saturating and saturating irradiances (37 and 289 μmol photons m−2 s−1). Porphyra umbilicalis was both more efficient at low irradiances (higher alpha) and had a higher Pmax than did P. purpurea (23.0 vs. 15.6 μmol O2 g−1 DW min−1), suggesting that P. umbilicalis is a better choice for mass culture where self-shading may be severe. The photosynthesis-irradiance relationship for the Conchocelis stage of P. purpurea was also examined. Tufts of filaments, grown at 10, 15, and 20° C, were assayed at growth temperatures at irradiances ranging from 0–315 μmol photons m−2 s−1. Tufts were slightly more productive at 15° than at 10° C, but only ca. 4–6% as productive as gametophytes. Maximum rates of net photosynthesis were reduced by 66–74% in tufts grown at 20° C (only about 2% of gametophytes). The Conchocelis stage, however, need not limit mariculture operations; once Conchocelis cultures are established, they can be maintained over the long-term as ready sources of spores for net seeding.  相似文献   

2.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

3.
The floating angiosperm Lemna gibba L. was exposed for 2 h to various combinations of photosynthetic photon flux densities and temperature. The extent of photoinhibition of photosynthesis was assayed by measuring the net CO2 uptake before and after a photoinhibitory treatment, and the time course for photoinhibition was studied. It was found that the maximum quantum yield and the light-saturated rate of CO2 uptake were affected by the interaction between light and temperature during the photoinhibitory treatment. At a constant photon flux density of 650 μmol m−2 s−1 the extent of photoinhibition increased with decreasing temperature showing that even a chilling-resistant plant like L. gibba is much more susceptible to photoinhibition at chilling temperatures. About 60% photoinhibition of the quantum yield for CO2 uptake could be obtained either by a high photon flux density of 1 750 μmol m−2 s−1 and 25°C or by a moderate photon flux density of 650 μmol m−2 s−1 and 3°C. The time courses of recovery from 60% photoinhibition produced by either of these two treatments were similar, indicating that the nature of the photoinhibition was intrinsically similar. The extent of photoinhibition was related to the amount of light absorbed in excess to what could be handled by photosynthesis at that temperature. The vital importance of photosynthesis in alleviating photoinhibition is discussed.  相似文献   

4.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

5.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

6.
The circadian rhythm in growth of the red macroalga Porphyra umbilicalis (Linnaeus) J. Agardh was investigated under different spectral light conditions in laboratory-grown thalli. A free-running rhythm was observed in constant green or red light at irradiances of 2.5 to 20 μmol photons·m−2·s−1, whereas arhythmicity occurred in constant blue light at 6–20 μmol photons·m−2·s−1. The circadian oscillator controlling growth rhythmicity in Porphyra uses most of the visible sunlight spectrum and possibly multiple photoreceptors with a high sensitivity for blue light and a lower sensitivity for red light. This was inferred from three experimental results: (1) The free-running period, τ, of the growth rhythm decreased with increasing irradiance, from approximately 25 h at 2.5 μmol photons·m−2·s−1 to 22 h at 20 μmol photons·m−2·s−1 in red or green light, (2) Dark pulses of 3 h duration, interrupting otherwise continuous green or red light, caused advances during the subjective day and delays during the subjective night; the circadian oscillator in Porphyra can discriminate darkness from green or red light, and (3) Low-irradiance blue light pulses (2.5 μmol photons·m−2·s−1) shifted the growth rhythm in red light of higher irradiance (e.g. 10 μmol photons·m−2·s−1), and a strong, high amplitude, type 0 phase response curve was obtained that is usually observed with light pulses shifting a circadian rhythm in otherwise continuous darkness.  相似文献   

7.
Photoinhibition of photosynthesis and subsequent recovery were studied in cultures of the unicellular green alga Chlamydomonas reinhardtii L. (wt strain 137 c mating type +) acclimated at high (27°C) and low (12°C) temperature, Photoinhibition was assayed by fluorescence kinetics (77K) and oxygen evolution measurements under growth temperature conditions Inhibition of 50% was obtained by exposing cultures acclimated at high temperature to a photosynthetic photon flux density (PPFD) of 1 600 μmol m−2 S−1 at. 27°C. and cultures acclimated at low temperature to a PPFD of 900 μmol m−2 s−1 at 12°C When the photoinhibitory conditions were shifted it was revealed that algae acclimated at low temperature had acquired an increased resistance to photoinhibition at both 12 and 27°C. Furthermore, acclimation at low temperature increased the capacity to recover from 50% photoinhibition at both 12 and 27°C Studies of photoinhibition in the presence of the protein synthesis inhibitor, chloramphenicol, revealed that in response to acclimation at low temperature during growth the algae became more dependent on protein synthesis to avoid photoinhibition. It is suggested that acclimation at low temperature rendered C. reinhardtii an increased resistance to photoinhibition by. increasing the rate of turnover of photodamaged proteins in photosystem II (PS II). However, we cannot exclude the possibility that the increased resistance to photoinhibition of C. reinhardtii acclimated at low temperature also involves modifications of the mechanism of photoinhibition.  相似文献   

8.
The effects of light on in vitro proliferation and subsequent in vivo rooting and acclimatisation of Vaccinium corymbosum were investigated. The shoots were exposed in vitro to different irradiances (total radiation ranging from 55 to 240 μmol m−2 s−1) for 7 to 60 days. In vitro growth and proliferation and the possible consequences on in vivo rooting were observed.
As compared to the control treatment (55 μmol m−2 s−1), higher irradiances improved proliferation and rooting ratios only with short applications (7 days). Short but high (210 μmol m−2 s−1) exposures applied at the end of the proliferation phase increased in vivo growth and rooting of the shoots. The shoots treated with strong light for longer times (14 and 28 days) showed both inhibition of growth and red colour of leaves and sprouts, and were less vigorous when transferred in vivo.  相似文献   

9.
Photosynthetic response of Eragrostis tef to temperature   总被引:1,自引:0,他引:1  
Photosynthetic characteristics of leaves of tef, Eragrostis tef (Zucc.) Trotter, plants, grown at 25/15°C (day/night), were measured at temperatures from 18 to 48°C. The highest carbon exchange rates (CER) occurred between 36 and 42°C. and averaged 27 μmol m−2 s−1. At lower or higher temperatures, CER was reduced, but the availability of CO2 to the mesophyll, measured as internal CO2 concentration, was highest when temperatures were above or below the optimum for CER. In addition, CER and stomatal conductance were not correlated, but residual conductance was highly correlated with CER (r = 0.98). In additional experiments, relative 13C composition for leaf tissue grown at 25, 35 and 45°C averaged -14.4 per mille, confirming that tef is a C4 grass species. Dry matter accumulation was higher at 35 than at 25, and lowest at 45°C. Leaf CER rates increased hyperbolically with increased light when measured from 0 to 2000 μmol m−2 s−1 PPFD. The highest CER, 31.8 μ-mol m-2 s−1, occurred at 35°C and 2000 μmol m−2 s−1 PPFR. At high light, CER at 25 and 35°C were nearly equal because of higher stomatal conductance at 25°C. Residual conductance was, however, clearly highest at 35°C compared to 25 and 45°C treatments. Stomatal conductance and residual conductance were not correlated in either set of experiments, yet residual conductance was always highest when temperatures were between 35 and 42°C across experiments, suggesting that internal leaf photosynthetic potential was highest across that temperature range.  相似文献   

10.
SUMMARY. Diel vertical migrations of a dinoflagellate, Ceratium hirundinella , were induced in a laboratory tube (1.63 × 0.15 m) under a light-dark cycle. The timing of vertical migrations differed between cultures in the exponential and stationary phases of growth; the latter showed a greater coincidence with the light regime.
Migration of cells into the surface layers occurred at low values of surface irradiance (<550 μeinsteins m−2 s−1). At irradiances more closely approaching summer sunshine (> 1300 μE m−2 s−1) there was a marked avoidance of surface waters, and population maxima were found at depths associated with a relative irradiance level of 10% or c. 150 μE m−2 s−1). Thermal stratification restricted downward movement of cells into the cooler layers. The combination of high surface irradiance and thermal stratification resulted in large, stable, sub-surface maxima of Ceratium , similar to those observed in natural waters under comparable environmental conditions.  相似文献   

11.
Pinus banksiana seedlings were grown for 9 months in enclosures in greenhouses at CO2 concentrations of 350 or 750 μmol mol−1 with either low (0.005 to 0. 3 W m−2) or high (0.25 to 0. 90 W m−2) ultraviolet-B (UV-B) irradiances. Total seedling dry weight decreased with high UV treatment but was unaffected by CO2 enrichment. High UV treatment also shifted biomass partitioning in favor of leaf production. Both CO2 and UV treatments decreased the dark respiration rate and light compensation point. High UV light inhibited photosynthesis at 350 but not at 750 μmol mol−1 CO2 due to a UV induced increase in ribulose-1, 5-bisphosphate carboxylase/oxygenase efficiency and ribulose-1, 5-bisphosphate regeneration. Stomatal density was increased by high UV irradiance but was unchanged by CO2 enrichment.  相似文献   

12.
Light effects on in vitro adventitious root formation in axillary shoots of a 95-year-old black cherry ( Prunus serotina Ehrh.) were examined using microcuttings derived from cultured vegetative buds. Three studies were performed: 1) complete darkness and 4 levels of continuous white light irradiance were tested at 70, 278, 555 and 833 μmol m−2 s−1; 2) white, red, yellow and blue light were tested to assess the importance of spectral quality; and 3) the effect of blue light at intensities of 7,15, 22 and 30 μmol m−2 s−1 was also studied, Measurements included rooting percentage, total number of roots per shoot, and shoot and root dry weight. There was a strong negative effect of white light intensity upon root formation. Blue light between 15 and 22 μmol m−2: s−1 significantly retarded root formation and completely inhibited it at 36 μmol m−2 s−1. Shoots treated with yellow light exhibited the highest rooting percentage, mean number of roots per shoot, and root dry weight.  相似文献   

13.
Populus euramericana (Dode) Guinier cv. Robusta plants were cultivated at irradiances of 7.5, 15 and 30 W m−2 (32.5, 65 and 130 μmol m2 s−1), 400–700 nm at 22°C and a relative humidity between 40 and 60% on a gravel culture subirrigated with Hoagland's nutrient solution. The basal diameter of the growing shoot, a measure of the number of apical cells participating in growth, increased proportionally to irradiance and was correlated with mature leaf length. The development of the length of the growing shoot (Lgs) depended also on the nutritional status of the (young) shoot. Lgs was strongly correlated with the rate of height growth.  相似文献   

14.
The abundance and cellular location of Fe-containing superoxide dismutase (Fe-SOD) in trichomes of Nodularia , Aphanizomenon and Anabaena collected from various depths in the Baltic Sea, and in trichomes of a cultured Nodularia strain, BC Nod-9427, isolated from the Baltic Sea, was examined by immunogold labelling. For trichomes collected from natural populations the areal concentration of Fe-SOD labelling decreased with depth: trichomes collected from surface accumulations had between 8 and 11 gold particles μm−2 whereas trichomes collected from a depth of 18 m were unlabelled. When trichomes collected from a depth of 10 m (mean areal labelling density 0·5 gold particles μm−2) were exposed to the higher irradiances present at 1 m, the areal concentration of Fe-SOD increased to 3·5–4 gold particles μm−2 within 4 h. When cultures of Nodularia strain BC Nod-9427, adapted to low light (10 μmol m−2 s−1), were transferred to an incident irradiance of 1350 μmol m−2 s−1, a doubling of the areal concentration of Fe-SOD gold label was observed within 1 h. Addition of 3-(3,4-dichlorophenyl)-1,1'-dimethylurea (DCMU) to cultures immediately before their transfer to increased illumination resulted in a decrease in areal Fe-SOD concentrations whereas addition of CdCl2 caused an increase over and above that induced by the elevated irradiance. These results suggest that Baltic Sea cyanobacteria are able to modulate their Fe-SOD content but that this might be in response to oxidative stress rather than to light per se .  相似文献   

15.
The effects of UV-C (254 nm), UV-A (365 nm) and broad-band UV (280–380 nm) on guard cells of Vicia faba L. cv. Long Pod were investigated in the presence of white light (450 μmol m−2 s−1). UV-C (7 μmol m−2 s−1) was found to cause leakage of 86Rb+ from guard cells, while UV-A (0.3 μmol m−2 s−1) stimulated increased uptake in these cells. A relatively small stimulatory effect was observed by broad-band UV (3 μmol m−2 s−1) during the first 30 min of irradiation with an apparent equilibration of influx and efflux thereafter. Leakage of 86Rb+ from guard cells continued despite the removal of UV-C and an increase in the amount of white light from 450 to 1500 μmol m−2 s−1, suggesting that membranes were irreversibly damaged. Irradiation of guard cells with UV-C for 30, 45 and 90 min indicated that these cells began to be affected already by 30 min UV-C irradiation.  相似文献   

16.
The environmental relationships and ecophysiology of Azorella compacta, a giant cushion plant, were investigated in Parque Nacional Lauca, Chile (18°10'–18°25' S and 69°16' W, 4400 m asl). The diurnal temperature range can reach 42 °C on some days of the year. The surface temperature of A. compacta was 13 °C below that of the air temperature of −7 °C at dawn, but from midmorning to late afternoon, the plant surface temperature remained within a few degrees of the air temperature. Soil surface temperatures did not differ between north- and south-facing slopes, but a model showed an increase in radiation reception by north-facing slopes throughout most of the year. Gas exchange measurements of A. compacta measured at the onset of the wet season ranged from −0.6662 to 11.4 μmol·m−2·s−1, and maximum stomatal conductance (Gs) was 410 mmol·m−2·s−1. The estimated light compensation point was 89 μmol·m−2·s−1 and estimated light saturation occurred at about 1280 μmol·m−2·s−1. Diurnal water potential measurements for A. compacta ranged from −1.67 to −2.65 MPa. This is one of the first ecophysiological studies of a tropical alpine cushion plant.  相似文献   

17.
In the subarctic moss Dicranum elongatum Schleich & Schwaegr., the level of total lipids and triacylglycerols (TAG) was high in late winter and spring and low in autumn and winter. Four-week exposure of field material to continuous light (135μmol m−2s−1) at 1°C resulted in a considerable increase in the amount of TAG in the autumn material acclimated to low temperatures and rhythmic light in the field. In contrast, the same treatment did not cause any increase in TAG in the spring material, acclimated to low temperatures and continuous light in the field. Results from experiments, in which moss cultivated for 4 months at 9°C on 12-h photoperiods (135μmol m−2s−1) was kept for 3 weeks at low temperatures (9°C and −3°C) either in continuous light (135 or 70 μmol m−2s−1) or with 12-h photoperiods (135 μmol m−2s−1), indicated that the TAG level was higher at higher light intensity. At 9°C it was also higher in continuous light of both intensities than in rhythmic light. These results strongly suggest that decreasing irradiance and decreasing daylength limits the accumulation of TAG in D. elongatum during autumn in the subarctic.  相似文献   

18.
Abstract. A compact, portable lighting system, developed for the measurement of photosynthesis in the field with portable chambers and applicable to the laboratory, is described. The system consists of a miniature 50-W, 12-V tungsten-halogen lamp and a light guide which is constructed with randomized fibre bundles and mounted above the window of a portable assimilation chamber. The light guide distributes light uniformly across the leaf surface; the photon irradiance at the leaf surface is monitored by measuring the irradiant emitted from one fibre-optic bundle using a sensor connected to the body of the light guide. Up to 1600 μmol quanta photosynthetic active radiation m−2s−1 may be achieved at the leaf surface; irradiance may be varied by wire mesh screens of different densities. Leaf temperature follows air temperature outside the chamber to within ±2 °C over the range 10–30 °C and within the range of photon irradiances from 0 to 1600/μmol quanta m −2s. The power supply for the lamp is a 12-V, 24-A h lead-acid battery and the photon irradiance at the leaf surface gradually decreases by c. 3% over 2.5 h of measurement. With this system, response of photosynthetic rate to irradiance and to CO2 partial pressure at constant irradiance may be measured in the field, independent of natural variations in solar irradiance.  相似文献   

19.
Proliferating cultures of Actinidia deliciosa A. Chev., C. F. Liang and A. R. Ferguson cv. Tomuri (♂) were grown under photosynthetic photon flux density (PPFD) rates ranging from 30 to 250 μmol m−2 s−1 in order to determine certain physiological parameters in vitro: CO2 evolution, photosynthesis at three CO2 atmospheric concentrations (330, 1450 and 4500 μl l−1), fresh and dry matter accumulation and proliferation rate.
A proportional response in dry weight, dry/fresh weight ratios and PPFD was found. The proliferation rate increased up to 120 μmol m−2 s−1 but decreased at higher rates. At the highest PPFD, the CO2 released from cultures and accumulated in the vessels reached 200 μl l−1 of; at the lowest rate the CO2 concentration reached 10500 μl l−1 after 28 days of culture. The photosynthetic rate at 1450 and 4500 μl l−1 of CO2 was nearly 4 times higher than at the lowest concentration tested.  相似文献   

20.
Effects of environmental conditions influencing photosynthesis and photorespiration on senescence and net protein degradation were investigated in segments from the first leaf of young wheat ( Triticum aestivum L. cv. Arina) plants. The segments were floated on H2O at 25, 30 or 35°C in continuous light (PAR: 50 or 150 µmol m−2 s−1) in ambient air and in CO2‐depleted air. Stromal enzymes, including phosphoglycolate phosphatase, glutamine synthetase, ferredoxin‐dependent glutamate synthase, phosphoribulokinase, and the peroxisomal enzyme, glycolate oxidase, were detected by SDS‐PAGE followed by immunoblotting with specific antibodies. In general, the net degradation of proteins and chlorophylls was delayed in CO2‐depleted air. However, little effect of CO2 on protein degradation was observed at 25°C under the lower level of irradiance. The senescence retardation by the removal of CO2 was most pronounced at 30°C and at the higher irradiance. The stromal enzymes declined in a coordinated manner. Immunoreactive fragments from the degraded polypeptides were in most cases not detectable. However, an insolubilized fragment of glycolate oxidase accumulated in vivo, especially at 25°C in the presence of CO2. Detection of this fragment was minimal after incubation at 30°C and completely absent on blots from segments kept at 35°C. In CO2‐depleted air, the fragment was only weakly detectable after incubation at 25°C. The results from these investigations indicate that environmental conditions that influence photosynthesis may interfere with senescence and protein catabolism in wheat leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号