首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extraction of high-quality genomic DNA from latex-containing plants   总被引:8,自引:0,他引:8  
The isolation of intact, high-molecular-mass genomic DNA is essential for many molecular biology applications including long PCR, endonuclease restriction digestion, Southern blot analysis, and genomic library construction. Many protocols are available for the extraction of DNA from plant material. However, for latex-containing Asteraceae (Cichorioideae) species, standard protocols and commercially available kits do not produce efficient yields of high-quality amplifiable DNA. A cetyltrimethylammonium bromide protocol has been optimized for isolation of genomic DNA from latex-containing plants. Key steps in the modified protocol are the use of etiolated leaf tissue for extraction and an overnight 25 degrees C isopropanol precipitation step. The purified DNA has excellent spectral qualities, is efficiently digested by restriction endonucleases, and is suitable for long-fragment PCR amplification.  相似文献   

2.
Large amounts of polyphenolics in dove tree leaves make it difficult to obtain high-quality genomic DNA during extraction. A rapid DNA minipreparation method was developed for dove tree (Davidia involucrata) and yields 40–50 μg genomic DNA from 0.1 g fresh matured and young leaves and bracts. The yield and quality of the resulting DNA is satisfactory, and the protocol can be scaled up according to sample size. The obtained DNA is suitable for PCR and the restriction enzyme digestion needed for Southern blotting.  相似文献   

3.
DNA is one of the most basic and essential genetic materials in the field of molecular biology.To date,isolation of sufficient and good-quality DNA is still a challenge for many plant species,though various DNA extraction methods have been published.In the present paper,a recycling DNA extraction method was proposed.The key step of this method was that a single plant tissue sample was recycled for DNA extraction for up to four times,and correspondingly four DNA precipitations(termed as the 1st,2nd,3rd and 4th DNA sample, respectively) were conducted.This recycling step was integrated into the conventional CTAB DNA extraction method to establish a recycling CTAB method.This modified CTAB method was tested in eight plant species,wheat,sorghum,barley,corn,rice,Brachypodium distachyon,Miscanthus sinensis and tung tree.The results showed that high-yield and good-quality DNA samples could be obtained by using this new method in all the eight plant species.The DNA samples were good templates for PCR amplification of both ISSR and SSR markers.The recycling method can be used in multiple plant species and can be integrated with multiple conventional DNA isolation methods,and thus is an effective and universal DNA isolation method.  相似文献   

4.
Dimorphandra mollis (Leguminosae), known as faveiro and fava d'anta, is a tree that is widely distributed throughout the Brazilian Cerrado (a savanna-like biome). This species is economically valuable and has been extensively exploited because its fruits contain the flavonoid rutin, which is used to produce medications for human circulatory diseases. Knowledge about its genetic diversity is needed to guide decisions about the conservation and rational use of this species in order to maintain its diversity. DNA extraction is an essential step for obtaining good results in a molecular analysis. However, DNA isolation from plants is usually compromised by excessive contamination by secondary metabolites. DNA extraction of D. mollis, mainly from mature leaves, results in a highly viscous mass that is difficult to handle and use in techniques that require pure DNA. We tested four protocols for plant DNA extraction that can be used to minimize problems such as contamination by polysaccharides, which is more pronounced in material from mature leaves. The protocol that produced the best DNA quality initially utilizes a sorbitol buffer to remove mucilaginous polysaccharides. The macerated leaf material is washed with this buffer until there is no visible mucilage in the sample. This protocol is adequate for DNA extraction both from young and mature leaves, and could be useful not only for D. mollis but also for other species that have high levels of polysaccharide contamination during the extraction process.  相似文献   

5.
Numerous methods are available for isolation of plant genomic DNA, but in practice these procedures are empirical due to variability in plant tissue composition. Consistent isolation of quality DNA from peanut (Arachis hypogaea L.) is particularly problematic due to the presence of phenolic compounds and polysaccharides. Inconsistencies in extraction results can be attributed to the age and growth stage of the plant material analyzed. Mature leaves have higher quantities of polyphenols, tannins, and polysaccharides that can contaminate DNA during isolation. We show that four published protocols could not be used to isolate peanut DNA of sufficient quality for PCR amplification or Southern hybridization. We have devised a new protocol that uses DEAE-cellulose purification to isolate peanut DNA useful for downstream applications.  相似文献   

6.
Collection of tissue and subsequent isolation of genomic DNA from mature tree species often proves difficult. DNA extraction from needles, leaves, or buds is recommended in many protocols. Collecting these tissues from mature trees generally requires the use of firearms or climbing if sampling is to be nondestructive. As a result, sample collection is a major expense of many tree-based projects. Tree (and plant) tissues generally contain large amounts of polysaccharides and phenolic compounds that are difficult to separate from DNA. Many methods aim to overcom these problems, with most involving extraction in buffers containing the nonionic detergent cetyltrimethyl-ammonium bromide (CTAB), followed by numerous steps to clean contaminants from the DNA, using organic solvents and differential salt precipitation. These steps are time-consuming, such that isolation of DNA becomes the bottleneck in many molecular studies. This paper presents a new, efficient, cambium collection method for tree species and a DNA extraction protocol based on that of Doyle and Doyle (1987), with follow-up purification using the Wizard nuclei lysis and protein precipitation solutions (Promega). Results show a significant improvement in yield and DNA purity compared with other published methods, with consistently high yields of pure genomic DNA and high sample throughput. The relatively low cost per extraction, no requirement for use of liquid nitrogen, no requirement for freezer storage, and long-term sample stability after collection are important additional benefits.  相似文献   

7.
DNA extraction is a time-consuming and expensive component of molecular marker analysis, constituting about 30–60% of the total time required for sample processing. Furthermore, the procedure for extracting high-quality DNA from tree species such as cocoa differs from extraction protocols suitable for other crop plants. This is accompanied by problems in collecting leaf tissues from field-grown cocoa trees, where storage facilities are not available and where transporting samples to laboratory for immediate refrigeration is usually impossible. We preserved cocoa leaf tissues in the field in an NaCl-CTAB-azide solution (as described in Rogstad, 1992), which did not require immediate refrigeration. This method also allowed preservation of leaf tissues for a few days during transportation and protected leaf tissues from bacterial and fungal attacks. Once transported to the laboratory, the samples were stored at 4°C for almost 1 y. To isolate good-quality DNA from stored leaf tissues, a rapid semiautomated and relatively high-throughput protocol was established. The procedure followed a modified CTAB/β-mercaptoethanol method of DNA extraction in a 96-well plate, and an automated system (i.e., GenoGrinder 2000) was used to grind the leaf tissues. The quality of DNA was not affected by long storage, and the quantity obtained per sample was adequate for about 1000 PCR reactions. Thus, this method allowed isolation of about 200 samples per day at a cost of $0.60 per sample and is a relatively high-throughput, low-cost extraction compared with conventional methods that use manual grinding and/or expensive kits.  相似文献   

8.
Current protocols to extract genomic DNA from microorganisms are still laborious, tedious and costly, especially for the species with thick cell walls. In order to improve the effectiveness of extracting DNA from microbial samples, a novel protocol, defined as two-step extraction method, along with an improved tissue-grinding device, was developed. The protocol included two steps, disruption of microbial cells or spores by grinding the sample together with silica sand in a new device and extraction of DNA with an effective buffer containing cell lysis chemicals. The device was prepared by using a commercial electric mini-grinder, adapted with a grinding stone, and a sample cup processed by lathing from a polytetrafluoroethylene rod. We tested the method with vegetative cells of four microbial species and two microbial spores that have thick cell walls and are therefore hard to process; these included Escherichia coli JM109, Bacillus subtilis WB600, Sacchromyces cerevisiae INVSc1, Trichoderma viride AS3.3711, and the spores of S. cerevisiae and T. viride, respectively, representing Gram-positive bacteria, Gram-negative bacteria, yeast, filamentous fungi. We found that this new method and device extracted usable quantities of genomic DNA from the samples. The DNA fragments that were extracted exceeded 23 kb. The target sequences up to about 5 kb were successfully and exclusively amplified by PCR using extracted DNA as the template. In addition, the DNA extraction was finalized within 1.5 h. Thus, we conclude that this two-step extraction method is an effective and improved protocol for extraction of genomic DNA from microbial samples.  相似文献   

9.
张国彦  翟保平 《昆虫学报》2009,52(3):345-352
高质量的基因组DNA样品是分子生态学研究的先决条件。本研究目的在于探索从东方粘虫Pseudaletia separata (Walker)成虫自然种群的乙醇保存标本中分离高质量基因组DNA的有效方案。在2 mL微型离心管中进行4种提取方案的实验比较,结果发现采用传统的苯酚抽提方法的2种方案提取腹部中段组织的基因组DNA,样品合格率只有7.69%~40%。但是,如果在苯酚抽提以前加入高浓度盐和十六烷基三甲基溴化铵(CTAB),就会使DNA样品合格率达到68.42%~95.28%,而且DNA平均产量达到5.59~10.04 mg/g,明显高于前者的2.83~5.78 mg/g (统计检验表明,在不同种群中差异显著或不显著)。研究结果还证明腹部组织比胸部组织更适宜提取DNA。对来自一个自然种群的99头东方粘虫DNA合格样品的统计分析表明,DNA提取总量(μg)与组织样品用量(mg)之间存在弱的正相关关系,平均DNA提取量(mg/g)与组织样品用量(mg)之间存在中度负相关关系。总之,在2 mL微型离心管中,用10~20 mg腹部组织,利用CTAB+苯酚抽提方法可以获得高纯度和高含量的基因组DNA样品。用该方案提取的基因组DNA能够顺利地进行微卫星位点的分离和基因分型。  相似文献   

10.
Lemon balm (Melissa officinalis) is a medicinal plant that is widely used as a sedative or calmant, spasmolytic and antibacterial agent and sleep aid. This has led to a high demand for lemon balm products, resulting in the extinction of this species in some of its natural habitats. Molecular techniques have increasingly been used in plant diversity conservation and isolation of PCR amplifiable genomic DNA is an important pre-requisite. Lemon balm contains high levels of polyphenols and polysaccharides, which pose a major challenge for the isolation of high-quality DNA. We compared different genomic DNA extraction protocols, including traditional phenol-chloroform DNA extraction protocols and two commercial kits for DNA purification for their ability to produce good-quality DNA from fresh leaves of five lemon balm genotypes. Quality and quantity of the DNA samples were determined using 0.8% agarose gel electrophoresis and a spectrophotometer. The DNA purity was further confirmed by PCR amplification using barley retrotransposon LTR base primers. The spectral quality of DNA as measured by the A(260)/A(280) ratio ranged from 1.46 to 2.37. The Fermentase genomic DNA purification kit and the CTAB extraction protocol using PVP and ammonium acetate to overcome the high levels of polyphenols and polysaccharides yielded high-quality DNA with a mean A(260)/A(280) ratio of 1.87. The quantity of DNA and its PCR purity were similar with all the protocols, but considering the time and cost required for extraction of DNA from a large number of samples, the CTAB protocol using PVP and ammonium acetate is suitable for lemon balm.  相似文献   

11.
Four DNA extraction protocols were compared for ability to produce DNA from the leaves or needles of several species: oak, elm, pine, fir, poplar and maize (fresh materials) and rhododendron (silica dried or frozen material). With the exception of maize and poplar, the species are known to be difficult for DNA extraction. Two protocols represented classical procedures for lysis and purification, and the other two were a combination of classical lysis followed by anion exchange chromatography. The DNA obtained from all procedures was quantified and tested by PCR and Southern hybridisation.Test results indicated superiority of one of the four protocols; a combination of CTAB lysis followed by anion exchange chromatography which enabled DNA extraction from all seven species. A second protocol also produced DNA from leaves or needles of all species investigated and was well suited for PCR applications but not Southern hybridisations. The remaining protocols produced DNA from some but not all species tested.Abbreviations: CTAB, hexadecyltrimethylammonium bromide; EtOH, Ethanol; TBE, tris-borate-EDTA.  相似文献   

12.
A novel noninvasive genomic DNA isolation protocol from fecal tissue, by the proteinase K digestion and guanidine hydrochloride extraction method, was assessed for the genotyping of cattle and buffalo. The epithelial tissues present on the surface of the feces were used as source for isolation of genomic DNA. The DNA isolated from fecal tissue was found to be similar as those obtained from other body tissues such as skin, brain, liver, kidney, and muscle. The quality of DNA was checked by agarose gel electrophoresis and polymerase chain reaction (PCR). We successfully amplified a 320 bp MHC class II DRB gene and a 125 bp mt-DNA D-loop region from isolated genomic DNA of cattle. Thus, the DNA isolated using this method was suitable for common molecular biology methods, such as restriction enzyme digestion and genotyping of dairy animals through PCR.  相似文献   

13.
Polymerase chain reaction (PCR) is a powerful technique in molecular biology and is widely used in various fields. By amplifying DNA fragments, PCR has facilitated gene cloning procedures, as well as molecular genotyping. However, the extraction of DNA from samples often acts as a limiting step of these reactions. In particular, the extraction of PCR-compatible genomic DNA from higher plants requires complicated processes and tedious work because plant cells have rigid cell walls and contain various endogenous PCR inhibitors, including polyphenolic compounds. We recently developed a novel solution, referred to as AnyDirect, which can amplify target DNA fragments directly from whole blood without the need for DNA extraction. Here, we developed a simple lysis system that could produce an appropriate template for direct PCR with AnyDirect PCR buffer, making possible the direct amplification of DNA fragments from plant leaves. Thus, our experimental procedure provides a simple, convenient, non-hazardous, inexpensive, and rapid process for the amplification of DNA from plant tissue.  相似文献   

14.
A relatively quick, inexpensive and consistent protocol for extraction of DNA from expanded leaf material containing large quantities of polyphenols, tannins and polysaccharides is described. Mature strawberry leaves, which contain high levels of these secondary components, were used as a study group. The method involves a modified CTAB extraction, employing high salt concentrations to remove polysaccharides, the use of polyvinyl pyrrolidone (PVP) to remove polyphenols, an extended RNase treatment and a phenol-chloroform extraction. Average yields range from 20 to 84 μg/g mature leaf tissue for both wild and cultivated octoploid and diploidFragaria species. Results from 60 plants were examined, and were consistently amplifiable in the RAPD reaction with as little as 0.5 ng DNA per 25-μL reaction. Presently, this is the first procedure for the isolation of DNA from mature strawberry leaf tissue that produces consistent results for a variety of different species, both octoploid and diploid, and is both stable and PCR amplifiable before and after extended storage. This procedure may prove useful for other difficult species in the family Rosaceae.  相似文献   

15.
OBJECTIVE: To date, there are only few systematic reports on the quality of DNA extracted from routine diagnostic cytologic specimens. It was the aim of the present study to evaluate the ability of 50% ethanol/2% carbowax (Saccomanno fixative) to preserve bronchial secretions with high quality genomic DNA as well as to compare different DNA extraction methods. METHODS: DNA was extracted from 45 bronchial aspirates by four different extraction protocols. Beside DNA yield, DNA quality with regard to purity, integrity, and PCR success rate were investigated. RESULTS: No fragmentation of sample DNA due to the fixative was detected. It was preserved as high molecular weight DNA. DNA yield, purity, and integrity were dependent on the DNA extraction method to some extend. Irrespective of the DNA extraction method the PCR success rate for amplification of beta-globin gene fragments (268, 536, and 989 bp) was 100%. CONCLUSION: A fixative containing 50% ethanol/2% carbowax preserves high quality DNA which is well suited for PCR-based assays regardless of the extraction protocol used. The selection of the DNA extraction protocol has to be adjusted to the circumstances of application.  相似文献   

16.
17.
High quality genomic DNA is the first step in the development of DNA-based markers for fingerprinting and genetic diversity of crops, including mango (Mangifera indica L.), a woody perennial. Poor quality genomic DNA hinders the successful application of analytical DNA-based tools. Standard protocols for DNA extraction are not suitable for mango since the extracted genomic DNA often contains secondary metabolites that interfere with analytical applications. In this study, we employed an additional step to remove polysaccharides, polyphenols and secondary metabolites from genomic DNA extracted from young or mature leaf tissue; then a modified traditional cetyl trimethyl ammonium bromide (CTAB) method was applied. The use of 0.4 M glucose improved DNA quality and avoided contamination and browning by polyphenolics, relative to the traditional CTAB method. This is an easy and efficient method for genomic DNA extraction from both young and mature leaves of mango. The isolated DNA was free of polysaccharides, polyphenols, RNA and other major contaminants, as judged by its clear colour, its viscosity, A260/A280 ratio and suitability for PCR-based reactions. This modified protocol was also used to extract high quality genomic DNA from other woody perennials, including walnut, guava, lychee, pear, grape and sugarcane.  相似文献   

18.
Mini-scale Genomic DNA Extraction from Cotton   总被引:8,自引:1,他引:7  
Large amounts of polyphenolics in cotton leaves make it difficult to obtain high-quality genomic DNA during extraction. A procedure to isolate nuclear DNA from local cotton leaves (gossypium hirsutum, MNH93, CIM443, FH672) was therefore developed. It consists of rapid isolation of stable nuclei, which hinders covalent interactions with phenolics, followed by DNA extraction. The yield and quality of the resulting DNA is satisfactory and the protocol can be scaled up or down according to sample size. It is suitable for PCR and the restriction enzyme digestion needed for Southern and RFLP analysis.  相似文献   

19.
In order to investigate the mutation characteristics and to further examine the genetic variation of mutant sunflower (Helianthus annuus) obtained in plants grown from seeds exposed to space conditions, only the mature tissues such as leaf and flower could be used for DNA extraction after mutation characteristics were confirmed. The rich contents of polysaccharides, tannins, secondary metabolites, and polyphenolics made it difficult to isolate high-quality DNA from mature leaves of sunflower according to previous reports. Based on the comparison of the differences in previously reported protocols, a modified method for the extraction of high-quality DNA was developed. Using this protocol, the DNA isolated from sunflower was high in quality and suitable for restriction digestion (EcoRI, HindII, BamHI), random amplified polymorphic DNA study and further molecular research. Therefore, the modified protocol was suitable for investigating the genetic variation of sunflower using mature leaf DNA.  相似文献   

20.
红豆杉属植物三种不同总DNA提取方法的分析比较   总被引:3,自引:0,他引:3  
刘杰  高连明 《广西植物》2011,31(2):244-249
红豆杉属植物均为濒危物种,也是国家一级保护植物.以红豆杉属植物叶片为材料,利用三种不同的DNA提取方法提取总DNA,用分光光度计和琼脂糖凝胶电泳方法检测所得总DNA的得率和纯度,用PCR扩增的方法检测所得总DNA的质量,并对三种不同提取方法的结果进行了比较分析.结果表明:CTAB法提取的DNA纯度和得率均较高,可直接用...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号