首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim Islands have often been used as model systems in community ecology. The incorporation of information on phylogenetic relatedness of species in studies of island assemblage structure is still uncommon, but could provide valuable insights into the processes of island community assembly. We propose six models of island community assembly that make different predictions about the associations between co‐occurrences of species pairs on islands, phylogenetic relatedness and ecological similarity. We then test these models using data on mammals of Southeast Asian islands. Location Two hundred and forty islands of the Sundaland region of Southeast Asia. Methods We quantified the co‐occurrence of species pairs on islands, and identified pairs that co‐occur more frequently (positive co‐occurrence) or less frequently (negative co‐occurrence) than expected under null models. We then examined the distributions of these significantly deviating pairs with respect to phylogenetic relatedness and ecological differentiation, and compared these patterns with those predicted by the six community assembly models. We used permutation regression to test whether co‐occurrence patterns are predicted by relatedness, body size difference or difference in diet quality. Separate co‐occurrence matrices were analysed in this way for seven mammal families and four smaller subsets of the islands of Sundaland. Results In many matrices, average numbers of negative co‐occurrences were higher than expected under null models. This is consistent with assemblage structuring by competition, but may also result from low geographic overlap of species pairs, which contributes to negative co‐occurrences at the archipelago‐wide level. Distributions of species pairs within plots of phylogenetic distance × ecological differentiation were consistent with competition, habitat filtering or within‐island speciation models, depending on the taxon. Regressions indicated that co‐occurrence was more likely among closely related species pairs within the Viverridae and Sciuridae, but in most matrices phylogenetic distance was unrelated to co‐occurrence. Main conclusions Simple deterministic models linking co‐occurrence with phylogeny and ecology are a useful framework for interpreting distributions and assemblage structure of island species. However, island assemblages in Sundaland have probably been shaped by a complex idiosyncratic set of interacting ecological and evolutionary processes, limiting the predictive power of such models.  相似文献   

2.
Aim  The influence of landscape structure on the distribution patterns of bats remains poorly understood for many species. This study investigates the relationship between area and isolation of islands and the probability of occurrence of six bat species to determine whether persistence and immigration abilities vary among bat species and foraging guilds.
Location  Thirty-two islands in the Gulf of California near the Baja California peninsula in north-west Mexico.
Methods  Using logistic regression and Akaike information criterion (AIC) model selection, we compared five a priori models for each of six bat species to explain patterns of island occupancy, including random patterns, minimum area effects, maximum isolation effects, additive area and isolation effects and compensatory area and isolation effects.
Results  Five species of insectivorous bats ( Pipistrellus hesperus , Myotis californicus , Macrotus californicus , Antrozous pallidus and Mormoops megalophylla ) displayed minimum area thresholds on incidence. The probability of occurrence tended to decrease at moderate distances of isolation ( c . 10–15 km) for these species (excepting A. pallidus ). The distributions of two non-insectivorous species ( Leptonycteris curasoae and Myotis vivesi ) were not influenced by island size and isolation.
Main conclusions  Minimum area thresholds on incidence suggest that island occupancy by insectivorous bats may be limited by resource requirements. Islands smaller than 100 ha typically did not support occupancy or use by insectivorous bats, except at minimal isolation distances. Insectivorous bat species may also be more sensitive to moderate levels of habitat isolation in some landscape contexts than previously expected. Our results suggest that differences in foraging habits may have important implications for understanding the distribution patterns of bats.  相似文献   

3.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

4.
Aim To assess how ant species richness and structure of ant communities are influenced by island age (disturbance history) in a dynamic archipelago. Location Cabra Corral dam, Salta Province, north‐west Argentina (25°08′ S, 65°20′ W). Methods Ant species richness on remaining fragments (islands) of a flooded forest was determined, as well as island area, isolation and age. Simple linear regressions were performed to assess relationships between ant species richness and those insular variables. Furthermore, a stepwise multiple linear regression analysis was conducted in order to determine the relative influence of each insular variable on ant species richness. Islands were categorized in two age classes (old and young) and co‐occurrence analyses were applied within each class to evaluate changes in community structure because of interspecific competition. Results Simple regression analyses indicated a moderate, positive effect of island area on ant species richness. Weak, marginally non‐significant relationships were found between ant species richness and both island isolation and island age, showing the tendency for there to be a decrease in ant species richness with island isolation and that ant species richness might be higher in old islands. The multiple regression analysis indicated that island isolation and age had no significant effects on the number of ant species, island area being the only independent variable retained in the analysis. On the contrary, whereas a random pattern of species co‐occurrence was found on young islands, ant communities in old islands showed a significantly negative pattern of species co‐occurrence, suggesting that the effect of competition on community structure was stronger on older islands than on younger islands. Main conclusions Island area was the most important variable explaining ant species richness on the islands of Cabra Corral dam. However, both island isolation and island age (or disturbance history) might also contribute to shape the observed community patterns. The present study also shows that island age significantly affects the strength with which interspecific interactions structure ant communities on islands.  相似文献   

5.
Aim Working within a system of high structural contrast between fragments and the surrounding matrix, we assessed patterns of species loss and changes in species composition of phyllostomid bats on artificial land‐bridge islands relative to mainland assemblages, and evaluated the responses of bats to forest edges. We further examined the relative influence of local‐scale characteristics (e.g. vegetation structure, island area) versus landscape attributes (e.g. forest cover, patch density) and the importance of spatial scale in determining phyllostomid species richness and composition on islands. Location Islands in Gatún Lake and adjacent mainland peninsulas in the Barro Colorado Nature Monument, Panama. Methods Bats were sampled over a 2‐year period on 11 islands as well as at forest‐edge and interior sites on adjacent mainland, resulting in > 8400 captures. Results The islands harboured a less diverse and structurally simplified phyllostomid bat fauna. Islands far from the mainland were especially species‐poor. This decline in species richness was associated with compositional shifts towards assemblages strongly dominated by frugivores with good dispersal abilities. Members of other ensembles, most importantly gleaning animalivores, were much less common or absent. Although overall species composition was not significantly altered, species richness at continuous forest‐edge sites was significantly lower compared with that at interior sites. Distance from the mainland and amount of forest cover in the landscape were the best predictors of species richness and assemblage composition. Responses were scale‐dependent. At the local scale, species richness was independent of island area but was correlated positively with distance from the mainland. In contrast, area effects became more important at larger spatial scales, suggesting that many species use multiple fragments. Main conclusions Our results underline the conservation value of small habitat remnants, which, even when embedded in a hostile matrix, can support a relatively diverse bat fauna, provided that there is a low degree of patch isolation and spatial proximity to larger tracts of continuous forest. Although the results at the assemblage level were inconclusive, we demonstrate that certain bat species and ensembles, particularly gleaning animalivores, exhibit high edge‐sensitivity. Our results point to habitat loss rather than changes in landscape configuration as the main process after isolation underlying phyllostomid bat responses, suggesting that conservation efforts should focus on habitat preservation instead of trying to minimize fragmentation per se at the expense of habitat amount.  相似文献   

6.
Aim Although bats of the Caribbean have been studied extensively, previous work is largely restricted to zoogeography, phylogeography or the effects of island characteristics on species richness. Variation among islands in species composition that is related to geographical or environmental variation remains poorly understood for much of the Caribbean. Location Caribbean islands, including the Bahamas, Greater Antilles and Lesser Antilles. Methods Using presence–absence data, we assessed the extent to which island area, maximum island elevation, inter‐island distance and hurricane‐induced disturbance affected patterns of composition and nestedness for bats in the Bahamas, Greater Antilles and Lesser Antilles. Analyses were conducted for all species, as well as for two broadly defined guilds: carnivores and herbivores. Results For the Bahamas, only inter‐island distance accounted for variation in species composition between islands. For the Greater and Lesser Antilles, differences in island area and inter‐island distance accounted for differences in species composition between islands. Variation in species composition was not related significantly to differences in elevation or hurricane‐related disturbance. In general, results of analyses restricted to a particular broad guild (i.e. carnivores or herbivores) mirrored those for all bats. Bat species composition was nested significantly in each island group. Nestedness was stronger in the Greater Antilles and in the Lesser Antilles than in the Bahamas. Carnivore assemblages were nested significantly in the Greater and in the Lesser Antilles, but not in the Bahamas. In contrast, herbivore assemblages were nested significantly in each island group. Main conclusions Inter‐island distance had a greater effect on compositional similarity of Caribbean bat assemblages than did island area, elevation or disturbance related to hurricanes. Differential immigration and hierarchical habitat distributions associated with elevational relief are likely to be primary causes for nestedness of Caribbean bat assemblages.  相似文献   

7.
Aim We evaluate characteristics of species ranges (i.e. coherence, species turnover and range boundary clumping) to determine the structure of bat metacommunities and metaensembles from Caribbean islands. We evaluate the effects of endemic species on that structure, and quantify associations between island characteristics and latent environmental gradients that structure these metacommunities and metaensembles. Location Sixty‐five Caribbean islands throughout the Bahamas, Greater Antilles and Lesser Antilles. Methods Metacommunity structure is an emergent property of a set of ecological communities at different sites defined by species distributions across geographic or environmental gradients. We analysed elements of metacommunity structure (coherence, range turnover and range boundary clumping) to determine the best‐fit pattern for metacommunities from all Caribbean islands, as well as from the Bahamas, the Greater Antilles and the Lesser Antilles separately. For each island group, analyses were conducted for all bats and for each of two broadly defined guilds (i.e. carnivores and herbivores). In addition, analyses were conducted for all species and for a subset in which endemic species were removed from the fauna. Spearman rank correlations identified island characteristics (area, elevation, latitude, longitude) that were associated significantly with island scores for ordination axes based on reciprocal averaging. Results Metacommunity structure for all bats and for carnivores was similar for each island group, with Clementsian distributions (i.e. discrete communities with groups of species replacing other groups of species along the gradient) for all islands, the Bahamas and the Lesser Antilles, but with nested distributions for the Greater Antilles. Herbivore distributions were random for the Bahamas, but were Clementsian for all other island groups. Removal of endemic species affected the best‐fit model of metacommunity structure in only 3 of 12 cases. In general, ordination scores for islands were correlated with longitude or latitude, but not with island area or elevation. Main conclusions Characteristics of bat species ranges and associated metacommunity structure were primarily dependent on the number and geographic arrangement of primary sources of colonization, and not on interspecific interactions, species‐specific levels of environmental tolerance, or the physical characteristics of islands. Endemic species did not greatly affect metacommunity structure in Caribbean bats.  相似文献   

8.
Aim A fundamental question in community ecology is whether general assembly rules determine the structure of natural communities. Although many types of assembly rules have been described, including Diamond’s assembly rules, constant body‐size ratios, favoured states, and nestedness, few studies have tested multiple assembly rule models simultaneously. Therefore, little is known about the relative importance of potential underlying factors such as interspecific competition, inter‐guild competition, selective extinction and habitat nestedness in structuring community composition. Here, we test the above four assembly rule models and examine the causal basis for the observed patterns using bird data collected on islands of an inundated lake. Location Thousand Island Lake, China. Methods  We collected data on presence–absence matrices, body size and functional groups for bird assemblages on 42 islands from 2007 to 2009. To test the above four assembly rule models, we used null model analyses to compare observed species co‐occurrence patterns, body‐size distributions and functional group distributions with randomly generated assemblages. To ensure that the results were not biased by the inclusion of species with extremely different ecologies, we conducted separate analyses for the entire assemblage and for various subset matrices classified according to foraging guilds. Results The bird assemblages did not support predictions by several competitively structured assembly rule models, including Diamond’s assembly rules, constant body‐size ratios, and favoured states. In contrast, bird assemblages were highly significantly nested and were apparently shaped by extinction processes mediated through area effects and habitat nestedness. The nestedness of bird assemblages was not a result of passive sampling or selective colonization. These results were very consistent, regardless of whether the entire assemblage or the subset matrices were analysed. Main conclusions Our results suggest that bird assemblages were shaped by extinction processes mediated through area effects and habitat nestedness, rather than by interspecific or inter‐guild competition. From a conservation point of view, our results indicate that we should protect both the largest islands with the most species‐rich communities and habitat‐rich islands in order to maximize the number of species preserved.  相似文献   

9.
Body size evolution in insular vertebrates: generality of the island rule   总被引:8,自引:1,他引:7  
Aim My goals here are to (1) assess the generality of the island rule – the graded trend from gigantism in small species to dwarfism in larger species – for mammals and other terrestrial vertebrates on islands and island‐like ecosystems; (2) explore some related patterns of body size variation in insular vertebrates, in particular variation in body size as a function of island area and isolation; (3) offer causal explanations for these patterns; and (4) identify promising areas for future studies on body size evolution in insular vertebrates. Location Oceanic and near‐shore archipelagos, and island‐like ecosystems world‐wide. Methods Body size measurements of insular vertebrates (non‐volant mammals, bats, birds, snakes and turtles) were obtained from the literature, and then regression analyses were conducted to test whether body size of insular populations varies as a function of body size of the species on the mainland (the island rule) and with characteristics of the islands (i.e. island isolation and area). Results The island rule appears to be a general phenomenon both with mammalian orders (and to some degree within families and particular subfamilies) as well as across the species groups studied, including non‐volant mammals, bats, passerine birds, snakes and turtles. In addition, body size of numerous species in these classes of vertebrates varies significantly with island isolation and island area. Main conclusions The patterns observed here – the island rule and the tendency for body size among populations of particular species to vary with characteristics of the islands – are actually distinct and scale‐dependent phenomena. Patterns within archipelagos reflect the influence of island isolation and area on selective pressures (immigration filters, resource limitation, and intra‐ and interspecific interactions) within particular species. These patterns contribute to variation about the general trend referred to as the island rule, not the signal for that more general, large‐scale pattern. The island rule itself is an emergent pattern resulting from a combination of selective forces whose importance and influence on insular populations vary in a predictable manner along a gradient from relatively small to large species. As a result, body size of insular species tends to converge on a size that is optimal, or fundamental, for a particular bau plan and ecological strategy.  相似文献   

10.
Disentangling community patterns of nestedness and species co-occurrence   总被引:3,自引:1,他引:2  
Werner Ulrich  Nicholas J. Gotelli 《Oikos》2007,116(12):2053-2061
Two opposing patterns of meta‐community organization are nestedness and negative species co‐occurrence. Both patterns can be quantified with metrics that are applied to presence‐absence matrices and tested with null model analysis. Previous meta‐analyses have given conflicting results, with the same set of matrices apparently showing high nestedness (Wright et al. 1998) and negative species co‐occurrence (Gotelli and McCabe 2002). We clarified the relationship between nestedness and co‐occurrence by creating random matrices, altering them systematically to increase or decrease the degree of nestedness or co‐occurrence, and then testing the resulting patterns with null models. Species co‐occurrence is related to the degree of nestedness, but the sign of the relationship depends on how the test matrices were created. Low‐fill matrices created by simple, uniform sampling generate negative correlations between nestedness and co‐occurrence: negative species co‐occurrence is associated with disordered matrices. However, high‐fill matrices created by passive sampling generate the opposite pattern: negative species co‐occurrence is associated with highly nested matrices. The patterns depend on which index of species co‐occurrence is used, and they are not symmetric: systematic changes in the co‐occurrence structure of a matrix are only weakly associated with changes in the pattern of nestedness. In all analyses, the fixed‐fixed null model that preserves matrix row and column totals has lower type I and type II error probabilities than an equiprobable null model that relaxes row and column totals. The latter model is part of the popular nestedness temperature calculator, which detects nestedness too frequently in random matrices (type I statistical error). When compared to a valid null model, a matrix with negative species co‐occurrence may be either highly nested or disordered, depending on the biological processes that determine row totals (number of species occurrences) and column totals (number of species per site).  相似文献   

11.
Parasites constitute an ideal system with which to investigate patterns and mechanisms of community structure and dynamics. Nevertheless, despite their prevalence in natural systems, parasites have been examined less often than other organisms traditionally used for testing hypotheses of community assembly. In the present study, we investigate possible effects of competitive interactions on patterns of distribution (co‐occurrence) and density among a group of streblid bat flies parasitic on short‐tailed fruit bats, Carollia perspicillata. Using null model analyses of species co‐occurrence, we did not find evidence that competition affects the distribution of bat fly species across hosts. Moreover, when non‐infested hosts were included, analyses showed evidence for interspecific aggregation, rather than for the segregation predicted by competition theory. Partial Pearson correlations among bat fly species densities showed no evidence of negative covariation in two of three cases. In the species pair for which a significant negative correlation was found, a visual analysis of plotted covariation indicated a constraint line, suggesting that competition between these two species might become operational only in some infracommunities when abundances of bat flies approach a maximum set by one or more limiting resources. Moreover, when a community‐wide estimation of the significance of density compensation was calculated, the result was not significant. Overall, we find no evidence that competition influences the distribution of bat flies on their hosts, and mixed support for effects of competition on the densities of species. These results are consistent with the idea that competition plays a role in structuring natural communities, but in many systems its effects are context‐dependent and might not be important relative to other factors. Wider analyses across taxonomic and environmental gradients and a detailed consideration of the different hypothesized effects of competition are necessary to fully understand the importance of competition on natural communities.  相似文献   

12.
Aim To evaluate the role of island isolation in explaining the distribution of vascular plant species in a dense freshwater archipelago, specifically comparing conventional measures of island isolation with landscape measures of island isolation. Location Data were collected from 35 islands within Massasauga Provincial Park on the eastern shores of the Georgian Bay, Ontario, Canada. Methods Sampled islands were located using stratified random selection based on location and size variation. The number of species was recorded along stratified random transects. Island isolation variables included distance to the mainland, distance to the nearest island, largest gap in a stepping‐stone sequence, distance to the closest upwind point of land, and a landscape measure of island isolation. The landscape measure of isolation was quantified as the percentage of the land area within 100, 250, 500, 1000, 1500 and 2000 m of each island’s perimeter. The isolation variables were calculated within a geographical information system (GIS). Dependent variables in the regression analyses included species richness, the logarithm of species richness and residuals of the species–area relationship. Independent variables included island isolation variables and their logarithmic transformations. Results Isolation plays a role, albeit small, in explaining species richness in the study area. In the regression analyses, the landscape measure of isolation provided a better fit than conventional measures of island isolation. Islands with less land than water within a 250‐m buffer were more effectively isolated and had fewer species present than islands surrounded by a greater proportion of water. Main conclusions Consistent with the species–isolation relationship, fewer species were present on more isolated islands within the Massasauga study area, as elucidated using a series of island buffers in a GIS. Applying a landscape measure of isolation to similar dense, freshwater archipelagos may elucidate species–isolation patterns not evident through conventional, straight‐line distance measurements of island isolation. The low value of the regression coefficients as well as the isolation history and high density of the Massasauga islands suggests caution in extending the results, especially to dissimilar archipelagos.  相似文献   

13.
14.
The analysis of species co‐occurrence patterns continues to be a main pursuit of ecologists, primarily because the coexistence of species is fundamentally important in evaluating various theories, principles and concepts. Examples include community assembly, equilibrium versus non‐equilibrium organization of communities, resource partitioning and ecological character displacement, the local–regional species diversity relationship, and the metacommunity concept. Traditionally, co‐occurrence has been measured and tested at the level of an entire species presence–absence matrix wherein various algorithms are used to randomize matrices and produce statistical null distributions of metrics that quantify structure in the matrix. This approach implicitly recognizes a presence–absence matrix as having some real ecological identity (e.g. a set of species exhibiting nestedness among a set of islands) in addition to being a unit of statistical analysis. An emerging alternative is to test for non‐random co‐occurrence between paired species. The pairwise approach does not analyse matrix‐level structure and thus views a species pair as the fundamental unit of co‐occurrence. Inferring process from pattern is very difficult in analyses of co‐occurrence; however, the pairwise approach may make this task easier by simplifying the analysis and resulting inferences to associations between paired species.  相似文献   

15.
M. Ekman  J. de  Jong 《Journal of Zoology》1996,238(3):571-580
The local patterns of distribution and resource utilization of four bat species ( Myotis brandti, Eptesicus nilssoni, Plecotus auritus and Pipistrellus pipistrellus ) were examined in patchy and continuous environments, using bat detectors. The effects of two different kinds of open matrix habitats (crop-fields and water) on species occurrence were compared in the patchy areas. A crop-field matrix seemed to have a greater negative influence on species occurrence than a water matrix. Presence and absence of species in the patchy areas were analysed against island area, area of some habitats, and isolation. All species were positively affected by one or more forest habitat parameters. Two species ( M. brandti and P. auritus ) were negatively affected by isolation, which suggests that they may be particularly vulnerable to increased forest patchiness. These species occurred mainly on large islands. Two hypotheses that might explain the habit of open area avoidance in M. brandti and P. auritus were tested: 1. Insect abundance hypothesis; 2. Foraging behaviour hypothesis. Both failed to explain why these two species avoid open habitats and as a consequence are negatively affected by isolation.  相似文献   

16.
The recent trend of agricultural intensification in tropical landscapes poses a new threat to biodiversity conservation. Conversion of previously heterogeneous agricultural landscapes to intensive plantation agriculture simplifies and homogenizes the landscape, reducing availability, and connectivity of natural habitat for native species. To assess the impact of agricultural intensification on bats, we characterized the bat assemblage in the Sarapiquí region of Costa Rica, where heterogeneous land uses are being converted to intensive, large‐scale pineapple plantations. In 2012 and 2013, we sampled bats in 20 remnant forest patches surrounded by varying proportions of pasture, mature forest, and pineapple and captured 1821 individual bats representing 39 species. We used ordination analyses to evaluate changes in species composition, where pineapple is the main component of the agricultural matrix. We identified landscape metrics specifically correlated with pineapple and used multiple linear regression to test their effects on bat species richness, diversity, and guild‐specific relative abundance. Results suggest pineapple expansion is driving changes in assemblage composition in remnant forest patches, resulting in new assemblages with higher proportions of frugivorous bats and lower proportions of insectivorous bats than in continuous mature forests. In addition, while pineapple does not diminish total bat species richness and diversity, the reduced forest cover and increased distance between forest patches in pineapple plantations has a significant negative impact on the relative abundance of insectivores. We also identify a potential threshold effect whereby patches surrounded by more than 50 percent forest can retain assemblage composition similar to that found in continuous mature forest.  相似文献   

17.
The present study compares the bat faunas of the islands of the Gulf of Guinea. Species composition. endemism and hypothetical origins are discussed. All families present in the mainland region are found in Bioko, a typical landbridge island. Foliage gleaning guild species (Nycteridae) show limited colonization abilities. This is also true of the family Rhinolophidae, but not for the closely related family Hipposideridae. The majority of the oceanic island species are African bats which show a widespread distribution and, therefore, have a high ecological plasticity. The continental relatives of the two endemic species Myonycteris brachycephala and Chaerephon tomensis are restricted to relatively small forested areas. Bioko's bat fauna is the result of the recent isolation from a formerly land-connected community. The oceanic bat faunas originated from the establishment of incomers from other areas. Nevertheless, extinction appears in both vicariant and dispersal processes, as an important factor in modelling the current bat communities of the Gulf of Guinea islands.  相似文献   

18.
19.
Frick WF  Hayes JP  Heady PA 《Oecologia》2009,158(4):687-697
Nested patterns of community composition exist when species at depauperate sites are subsets of those occurring at sites with more species. Nested subset analysis provides a framework for analyzing species occurrences to determine non-random patterns in community composition and potentially identify mechanisms that may shape faunal assemblages. We examined nested subset structure of desert bat assemblages on 20 islands in the southern Gulf of California and at 27 sites along the Baja California peninsula coast, the presumable source pool for the insular faunas. Nested structure was analyzed using a conservative null model that accounts for expected variation in species richness and species incidence across sites (fixed row and column totals). Associations of nestedness and island traits, such as size and isolation, as well as species traits related to mobility, were assessed to determine the potential role of differential extinction and immigration abilities as mechanisms of nestedness. Bat faunas were significantly nested in both the insular and terrestrial landscape and island size was significantly correlated with nested structure, such that species on smaller islands tended to be subsets of species on larger islands, suggesting that differential extinction vulnerabilities may be important in shaping insular bat faunas. The role of species mobility and immigration abilities is less clearly associated with nestedness in this system. Nestedness in the terrestrial landscape is likely due to stochastic processes related to random placement of individuals and this may also influence nested patterns on islands, but additional data on abundances will be necessary to distinguish among these potential mechanisms.  相似文献   

20.
Mediterranean islands have complex reptile assemblages, but little is known about the factors that determine their organization. In this study, the structure of assemblages of Squamata was evaluated based on their species richness and two measures of phylogenetic diversity (variability and clustering). I evaluated the composition of the assemblages comparing distinct biogeographic subregions within the Mediterranean: Adriatic, Aegean, Balearic, Corsica–Sardinia, Crete, Gulf of Gabés, Ionian Sea, Ligurian Sea, Malta, Sicily, and Tyrrhenian Sea. The effect of island environments and geographical isolation on the diversity metrics was assessed using generalized linear models. The analyses indicated that species richness was mostly influenced by island area and geographical isolation. Assemblages on smaller islands were poorer in species and phylogenetically dispersed, possibly as an effect of interspecific competition. The species composition of the assemblages was determined by similar environmental drivers within the biogeographic subregions, including island area, island elevation, geographical isolation, and aridity. In several subregions, significant patterns of phylogenetic attraction were found in species co‐occurrences, caused by the limits imposed by the island size on large predatory species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号