首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nocturnal acid accumulation, water content, osmotic pressure (π), and nonstructural carbohydrates were determined in the chlorenchyma and the water-storage parenchyma of Opuntia ficus-indica (L.) Miller for well-watered plants and those subjected to drought for 15 weeks. During the 15-week drought, total cladode water content decreased by 57%, the water-storage parenchyma losing a greater fraction of water than the chlorenchyma, which most likely helped maintain nocturnal acid accumulation in the latter tissue. Despite the preferential water loss from the water-storage parenchyma, it had a lower π than the chlorenchyma over the 15 weeks of drought, suggesting a substantial decrease in osmotically active solutes in the water-storage parenchyma. Also, the measured π increases of both tissues were much less than those predicted based on the loss of water during drought and the initial content of osmotically active solutes under well-watered conditions. A decrease in the amount of soluble sugars (glucose. fructose and sucrose) occurred in plants subjected to drought. accounting for 46% and 81% of the difference between the measured and the predicted increases in π of the chlorenchyma and the water-storage parenchyma. respectively. The decrease in soluble sugars was associated with an equivalenl increase in polysaccharides, presumably starch, in the water-storage parenchyma. but not in the chlorenchyma.  相似文献   

2.
Abstract Water flow and water storage were investigated for Agave deserti, a desert succulent showing crassulacean acid metabolism (CAM). The anatomy and water relations of the peripheral chlorenchyma, where CAM occurs, and the central water-storage parenchyma were investigated for its massive leaves so that these tissues could be incorporated as discrete elements into an electrical-circuit analogue of the whole plant. The daily cycling of osmotic pressure was represented by voltage sources in series with the storage capacitors. With soil water potential and leaf transpiration rate as input variables, axial water flow through the vascular bundles and radial flows into and out of storage during the day/night cycle were determined. The predominantly nocturnal transpiration was coincident with increases in cell osmotic pressure and in titratable acid of the leaf chlorenchyma. In the outer layers of the chlorenchyma, water potential was most negative at the beginning of the night when transpiration was maximum, while the water-storage parenchyma reached its minimal water potential 9 h later. The roots plus stem contributed 7% and the leaves contributed 50% to the total water flow during maximal transpiration; peak water flow from the soil to the roots occurred at dawn and was only 58% of the maximal transpiration rate. Over each 24-h period, 39% of the water lost from the plant was derived from storage, with flow into storage occurring mainly during the daytime. Simulations showed that the acid accumulation rhythm of CAM had little impact on water uptake from the soil under the conditions employed. In the outer chlorenchyma, water potential and water flows were more sensitive to the day/night changes in transpiration than in osmotic pressure. Nevertheless, cell osmotic pressure had a large influence on turgor pressure in this tissue and determined the extent to which storage was recharged during the latter part of the night.  相似文献   

3.
Abstract. Electric-circuit analogue models of the water relations of crassulacean acid metabolism (CAM) succulents such as Agave deserti and Ferocactus acanthodes have predicted diel movement of water between the water-storage parenchyma and the photo-synthetic chlorenchyma. Injection of tritiated water into either tissue in the laboratory confirmed substantial and bidirectional water movements, especially under conditions of wet soil. For A. deserti , water movement from the water-storage parenchyma to the chlorenchyma increased at night as the chlorenchyma osmotic pressure increased. Although nocturnal osmotic pressure increases and transpiration for both species were minimal in the field under dry conditions, diel changes in the deuterium: hydrogen ratio (expressed as ΔD) were similar for the water-storage parenchyma and the chlorenchyma. Such indication of [substantial mixing of water between the tissues over a 24-h cycle was more evident under wet conditions in the field. For A. deserti , ΔD then increased by 32%o from the afternoon to midnight and was essentially identical in the water-storage parenchyma and the chlorenchyma. For F. acanthodes , the diel changes in ΔD were one-third those of A. deserti , and ΔD was always slightly higher for the chlorenchyma than for the water-storage parenchyma, apparently reflecting the lower surface-to-volume ratio of A. deserti. In summary, data obtained using radioactive and stable isotopes strongly supported model predictions concerning diel cycles of internal water distribution for these CAM species.  相似文献   

4.
Nobel PS 《Annals of botany》2006,97(3):469-474
BACKGROUND AND AIMS: Hylocereus undatus, a hemiepiphytic cactus cultivated in 20 countries for its fruit, has fleshy stems whose water storage is crucial for surviving drought. Inter-tissue water transfer during drought was therefore analysed based on cell volumes and water potential components. METHODS: In addition to determining cell dimensions, osmotic pressures and water potentials, a novel but simple procedure leading to an external water potential of zero was devised by which cells in thin sections were perfused with distilled water. The resulting volume changes indicated that the parenchyma-chlorenchyma water movement was related to more flexible cell walls in the water-storage parenchyma with its lower internal turgor pressure (P) than in the chlorenchyma. KEY RESULTS: Under wet conditions, P was 0.45 MPa in the chlorenchyma but only 0.10 MPa in the water-storage parenchyma. During 6 weeks of drought, the stems lost one-third of their water content, becoming flaccid. About 95 % of the water lost came from cells in the water-storage parenchyma, which decreased by 44 % in length and volume, whereas cells in the adjacent chlorenchyma decreased by only 6 %; the osmotic pressure concomitantly increased by only 10 % in the chlorenchyma but by 75 % in the water-storage parenchyma. CONCLUSIONS: The concentrating effect that occurred as cellular volume decreased indicated no change in cellular solute amounts during 6 weeks of drought. The ability to shift water from the parenchyma to the chlorenchyma allowed the latter tissue to maintain a positive net CO2 uptake rate during such a drought.  相似文献   

5.
Both Carpobrotus edulis and Senecio ?mandraliscae possess leaves with a peripheral chlorenchyma and colourless internal water-storage tissue. Water stress in C. edulis growing under semi-natural conditions resulted in the induction of weak Crassulacean acid metabolism (CAM) whereas well-watered plants of S. ?mandraliscae exhibited a similar degree of CAM. Titratable acidity in the separated water-storage tissue was substantially lower than in the chlorenchyma in both species but, nevertheless, increased during the night and decreased during the day either when sampled from the intact plant or from incubated tissue slices. Indeed, the increase in nocturnal titratable acidity produced by the water-storage tissue in situ accounted for approx. 30% of total acidification on a per-leaf basis. It appears that during the night the water-storage tissue in these species is able to fix CO2 which is subsequently released during the day to enter the photosynthetic carbon-reduction cycle of the chlorenchyma. Diurnal rhythms of water potential (Ψ) and osmotic potential (Ψs) were measured in separated chlorenchyma and water-storage tissue by thermocouple psychrometry. Both parameters increased during the latter part of the daytime and initial nocturnal period and decreased during the rest of the night and into the post-dawn period. The chlorenchyma of water-stressed plants of C. edulis appeared to possess a marked negative turgor pressure (as determined from Ψ-Ψs) but this was caused by a severe underestimation in the measurement of the chlorenchyma Ψ. It is suggested that this artefact arose from release of colloidal polysaccharide mucilage, or possibly tannins, from broken tannin cells producing a lowering of water activity when measured using thermocouple psychrometry.  相似文献   

6.
Summary Thickness, relative water content (RWC), osmotic pressure, water potential isotherms, and mucopolysaccharide content were measured for the photosynthetic chlorenchyma and the water-storage parenchyma of the winter hardy cactus, Opuntia humifusa, after shifting from day/night air temperatures of 25° C/15° C to 5° C/–5° C. After 14 d at 5° C/–5° C, the average fraction of water contained in the symplast decreased from 0.92 to 0.78, the water potential of saturated (fully hydrated) tissue was essentially unchanged, but the osmotic pressure of saturated tissue decreased (by 0.15 MPa for the chlorenchyma and 0.12 MPa for the water-storage parenchyma). After 7 weeks at 5° C/–5° C, tissue thickness was reduced by 61% for the chlorenchyma and 65% for the water-storage parenchyma, and the RWC decreased by 42% and 68%, respectively; these changes contributed to an osmotic pressure increase of 0.55 MPa for the chlorenchyma and 0.34 MPa for the water-storage parenchyma. During the 7 week acclimation to low temperature, mucopolysaccharide increased by 114% for the chlorenchyma and by 89% for the water-storage parenchyma. The water potential of the extracted mucopolysaccharide was relatively constant for an RWC between 1.00 and 0.30, decreasing abruptly below 0.30. Changes in water relations parameters and in mucopolysaccharide content during low-temperature acclimation may reduce water efflux from the cells, and thus reduce damage due to rapid dehydration during extracellular freezing.  相似文献   

7.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   

8.
Opuntia ficus-indica, a Crassulacean acid metabolism plant cultivated for its fruits and cladodes, was used to examine chemical and physiological events accompanying low-temperature acclimation. Changes in osmotic pressure, water content, low molecular weight solutes, and extracellular mucilage were monitored in the photosynthetic chlorenchyma and the water-storage parenchyma when plants maintained at day/night air temperatures of 30/20°C were shifted to 10/0°C. An increase in osmotic pressure of 0.13 megapascal occurred after 13 days at 10/0°C. Synthesis of glucose, fructose, and glycerol accounted for most of the observed increase in osmotic pressure during the low-temperature acclimation. Extracellular mucilage and the relative apoplastic water content increased by 24 and 10%, respectively, during exposure to low temperatures. These increases apparently favor the extracellular nucleation of ice closer to the equilibrium freezing temperature for plants at 10/0°C, which could make the cellular dehydration more gradual and less damaging. Nuclear magnetic resonance studies helped elucidate the cellular processes during ice formation, such as those revealed by changes in the relaxation times of two water fractions in the chlorenchyma. The latter results suggested a restricted mobility of intracellular water and an increased mobility of extracellular water for plants at 10/0°C compared with those at 30/20°C. Increased mobility of extracellular water could facilitate extracellular ice growth and thus delay the potentially lethal intracellular freezing during low-temperature acclimation.  相似文献   

9.
Daily and seasonal patterns in water flow and water potentialwere investigated for the Crassulacean acid metabolism succulentAgave deserti during an extended summer drought and for a periodfollowing rainfall. Field measurements of transpiration andof osmotic pressure changes over selected 24 h periods wereused as input variables for a computer model of water flow thatwas based on an electrical circuit analog of the whole plant.Parameters such as root resistance and tissue capacitance werealso varied to reflect the effects of changing plant or soilwater status. The model predicted internal water flow and waterpotential during the drought cycle and was used to assess therole of tissue osmotic properties in water uptake from the soiland in internal water redistribution. For plants under wet soil conditions, 55% of the night-timetranspiration was derived from water storage, this storage beingrecharged during the day. As drought progressed, transpirationand the nocturnal increase in osmotic pressure declined, althoughthe osmotic pressure itself increased. The difference in osmoticpressure between the water storage tissue and the chlorenchymacaused a net flow of water into the chlorenchyma after 3 weeksof drought, thereby increasing chlorenchyma turgor pressure.Simulations also indicated that a large increase in root resistancemust occur to prevent substantial water loss from the plantto the dry soil. After rainfall, recharge of plant water storagewas complete within one week, although full recovery in theamplitude of daily osmotic pressure variations took longer. Key words: Agave deserti, transpiration, water potential, water storage  相似文献   

10.
J. A. C. Smith  U. Lüttge 《Planta》1985,163(2):272-282
A study was made of the day-night changes under controlled environmental conditions in the bulk-leaf water relations of Kalanchoë daigremontiana, a plant showing Crassulacean acid metabolism. In addition to nocturnal stomatal opening and net CO2 uptake, the leaves of well-watered plants showed high rates of gas exchange during the whole of the second part of the light period. Measurements with the pressure chamber showed that xylem tension increased during the night and then decreased towards a minimum at about midday; a significant increase in xylem tension was also seen in the late afternoon. Cell-sap osmotic pressure paralleled leaf malate content and was maximum at dawn and minimum at dusk. The relationship between these two variables indicated that the nocturnally synthesized malate was apparently behaving as an ideal osmoticum. To estimate bulk-leaf turgor pressure, values for water potential were derived by correcting the pressurechamber readings for the osmotic pressure of the xylem sap. This itself was found to depend on the malate content of the leaves. Bulk-leaf turgor pressure changed rhythmically during the day-night cycle; turgor was low during the late afternoon and for most of the night, but increased quickly to a maximum of 0.20 MPa around midday. In water-stressed plants, where net CO2 uptake was restricted to the dark period, there was also an increase in bulk-leaf turgor pressure at the start of the light period, but of reduced magnitude. Such changes in turgor pressure are likely to be of considerable ecological importance for the water economy of crassulacean-acid-metabolism plants growing in their natural habitats.Abbreviation and symbols CAM Crassulacean acid metabolism - P turgor pressure - osmotic pressure - water potential Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday  相似文献   

11.
C. Schäfer  U. Lüttge 《Oecologia》1986,71(1):127-132
Summary Measurements of gas exchange, xylem tension and nocturnal malate synthesis were conducted with well-watered and droughted plants of Kalanchoë uniflora. Corresponding results were obtained with plants grown in 9 h and 12 h photoperiods. In well-watered plants, 50 to 90% of total CO2-uptake occurred during the light period. Nocturnal CO2-uptake and malate synthesis were higher and respiration rate was lower in old leaves (leaf pairs 6 to 10) compared to young leaves (leaf pairs 1 to 5). Within four days of drought distinct physiological changes occurred. Gas exchange during the light period decreased and CO2-uptake during the dark period increased. Nocturnal malate synthesis significantly increased in young leaves.Respiration rate decreased during periods of drought, this decrease being more pronounced in young leaves compared to old leaves. Restriction of gas exchange during the light period resulted in a decrease of transpiration ratio from more than 100 to about 20. The difference between osmotic pressure and xylem tension decreased in young leaves, indicating a reduction in bulk leaf turgor-pressure.We conclude that both the CAM-enhancement in young leaves and the decrease of respiration rate are responsible for the increase of nocturnal CO2-uptake during water stress. During short drought periods, which frequently occur in humid habitats, the observed physiological changes result in a marked reduction of water loss while net CO2-uptake is maintained. This might be relevant for plant growth in the natural habitat.Abbreviations LP light period - DP dark period - CAM crassulacean acid metabolism  相似文献   

12.
Matric bound water was measured as water retained by frozen and thawed tissue after desorption on a pressure membrane filter under 20 bars nitrogen gas pressure. Central water-storage tissue and peripheral chlorenchyma from leaves or stems of 15 taxonomically diverse non-halophytic succulent species were investigated. Matric bound water as a per cent of the dry weight averaged higher in water storage than in chlorenchyma tissue but lower than values reported for many mesophytic leaves. Matric bound water as a proportion of the total water held, however, was lower in water tissues. Osmotic potentials were generally high (solute contents low). It is concluded that matric or osmotic forces cannot account, in any unique way, for the high water content of water tissues. This appears to depend, instead, on the enormous ability of the thin-walled cells to take up available water and expand.  相似文献   

13.
Clusia minor L. is a C3-CAM species in which Crassulacean acid Metabolism (CAM) is induced, among other factors, by water deficit. We propose that CAM induction by natural drought in C. minor shifts the sap flow pattern from daytime to a night-time one, and that the decreased osmotic potential due to increased malate content in droughted plants aids in the increase in nocturnal sap flow. In order to test these hypotheses, we followed for 2 years the seasonal changes in parameters of water relationships and sap flow velocity in one single, freestanding tree growing in Caracas. Leaf water and osmotic potential were measured psychrometrically, nocturnal proton accumulation by titration of aqueous leaf extracts and sap flow density with thermal dissipation probes. Leaf water, osmotic and turgor potential remained relatively high throughout the seasons. Nocturnal proton accumulation was nil under extreme drought or after frequent and heavy rains, and high after moderate rainfall. Estimated malate and citrate concentrations contributed up to 80 and 60%, respectively, of the value of osmotic potential. The shape of the daily courses of sap flow velocity varied seasonally, from mostly diurnal during the dry season to mostly nocturnal after a short dry spell during the rainy season, when nocturnal acid accumulation attained high values. There was a strong positive relationship between the proportion of the integrated sap flow courses corresponding to the night and dawn [H+] (r 2 = 0.88). Increased nocturnal sap flow in the CAM stage of the tree of C. minor may be explained by a lower osmotic potential due to an increased acid concentration, together with increased stomatal aperture, as suggested by increased nocturnal acid accumulation probably due to nocturnal CO2 fixation.  相似文献   

14.
研究了景天酸代谢(CAM)植物菠萝(Ananascomosus)叶片绿色组织与贮水组织的苹果酸、腺苷酸及焦磷酸含量的昼夜变化。夜间苹果酸的积累仅发生在绿色组织中,而且,其含量也远高于贮水组织。绿色组织中能荷和无机磷含量夜间增高,白天下降。绿色组织中焦磷酸含量夜间增加,在白天的头几个小时迅速下降到低的水平,然后保持稳定。与绿色组织相比,贮水组织中ATP、ADP、无机磷和焦磷酸的含量低得多,且不表现昼夜变化,在贮水组织中没有测到AMP。  相似文献   

15.
Physiological responses of Opuntia ficus-indica to growth temperature   总被引:2,自引:0,他引:2  
The influences of various day/night air temperatures on net CO2 uptake and nocturnal acid accumulation were determined for Opuntia ficus-indica, complementing previous studies on the water relations and responses to photosynthetically active radiation (PAR) for this widely cultivated cactus. As for other Crassulacean acid metabolism (CAM) plants, net nocturnal CO2 uptake had a relatively low optimal temperature, ranging from 11°C for plants grown at day/night air temperatures of 10°C/0°C to 23°C at 45°C/35°C. Stomatal opening, which occurred essentially only at night and was measured by changes in water vapor conductance, progressively decreased as the measurement temperature was raised. The CO2 residual conductance, which describes chlorenchyma properties, had a temperature optimum a few degrees higher than the optimum for net CO2 uptake at all growth temperatures. Nocturnal CO2 uptake and acid accumulation summed over the whole night were maximal for growth temperatures near 25°C/15°C, CO2 uptake decreasing more rapidly than acid accumulation as the growth temperature was raised. At day/night air temperatures that led to substantial nocturnal acid accumulation (25°C/15°C.). 90% saturation of acid accumulation required a higher total daily PAR than at non-optimal growth temperatures (10°C/0°C and 35°C/25°C). Also, the optimal temperature of net CO2 uptake shifted downward when the plants were under drought conditions at all three growth temperatures tested, possibly reflecting an increased fractional importance of respiration at the higher temperatures during drought. Thus, water status, ambient PAR, and growth temperatures must all be considered when predicting the temperature response of gas exchange for O. ficus-indica and presumably for other CAM plants.  相似文献   

16.
菠萝叶片绿色组织与贮水组织中代谢物水平的昼夜变化   总被引:2,自引:2,他引:0  
研究了景天酸代谢(CAM)植物菠萝叶片绿色组织与贮水组织(WSP)的苹果酸、柠檬酸、异柠檬酸、淀粉、果糖、葡萄糖、蔗糖、葡糖-1-磷酸(G-1-P)、葡糖-6-磷酸(G-6-P)、果糖-6-磷酸(F-6-P)、草酰乙酸(OAA)及磷酸烯醇式丙酮酸(PEP)水平的昼夜变化。夜间苹果酸的积累仅发生在绿色组织中,表明只有绿色组织才能进行CAM。可溶性已糖(葡萄糖和果糖)是绿色组织中夜间苹果酸累积的主要碳源。绿色组织G-1-P、G-6-P和F-6-P水平在夜间的初期上升,后期下降,昼间的头3h仍下降,3h后变化不明显。绿色组织中OAA和PEP水平也发生昼夜变化。在贮水组织中没有测到淀粉、蔗糖、OAA和PEP。除葡萄糖和果糖外,WSP中其它代谢物的含量都远低于绿色组织,而且WSP中所有代谢物都无明显的昼夜变化。  相似文献   

17.
18.
Plants of the crassulacean acid metabolism (CAM) species Plectranthus marrubioides (Lamiaceae) were subjected to short- and long-term changes in air humidity in controlled-environment experiments. Stomata of well-watered individuals of this all-cell leaf-succulent taxon responded directly, quickly and reversibly to variations of the water vapour gradient between leaf and air (Δw). Mean night-time leaf conductance to water vapour decreased curvilinearly with increasing Δw but linearly with lowered relative air humidity. Stomatal response was generally independent of the prevailing temperature and was not linked to CO2 uptake rates. Therefore, net night-time carbon gain, nocturnal malic acid accumulation and, thus, relative carbon recycling were not influenced by changes in air humidity in the temperature range tested. Mean nocturnal molar water use efficiency, however, decreased with decreasing air humidity because of the increased transpirational water loss. If watering was repeatedly withheld for several days during the experiments, employing a temperature regime of 35/30°C day and night, stomatal conductance became low enough to inhibit CO2 uptake, but only at the highest Δw. The results suggest that drought stress was necessary to increase responsiveness of plants to the point where CAM was also inhibited by decreases in air humidity.  相似文献   

19.
This study investigated the factor of the physiological characteristics causing the reduction of yield of soybean plants (Glycine max (L.) Merr.) by drought stress, by monitoring changes in stem diameter and pod thickness, and photosynthetic activity, partitioning of 13C-labeled photosynthate. Drought stress reduced the whole plant dry weight due to the decrease in leaf and pod dry matter accumulation; however, this stress did not have a significant effect on stem growth. Leaf photosynthesis was also severely decreased by drought stress in the early stage of stress treatment as leaf water potential decreased. Imposition of stress decreased pod thickness, but stem diameter increased. The adverse effect of drought stress on pod thickness was more evident at night than during the day. The stem diameter also shrank during the day and expanded at night, but the nocturnal increase in stem diameter during drought stress treatment was greater for stressed plants compared with well-watered controls. Drought stress significantly promoted 13C partitioning from the fed leaf to other parts of the plant; the stem was the largest beneficiary. Soluble carbohydrates accumulated in various plant parts under the influence of the stress, but starch concentration declined in all organs except the stem. These results indicated that stem growth was promoted by drought stress compared to pod growth at the early grain-filling stage.  相似文献   

20.
Abstract. Wall-yield threshold pressures of growing leaves obtained from field-grown soybean ( Glycine max [L.] Merr.) plants were measured in vapour pressure psychrometers. The plants were grown either under well-watered or water deficit conditions. Wall-yield threshold pressures were measured at night when turgor pressure was expected to exceed the wall-yield threshold pressure both in drought-stressed and well-watered growing leaves. Wall-yield threshold pressure increased as the area of the growing leaves increased in both treatments. After an 8-d drought, wall-yield threshold pressure in leaves which had recently emerged from the meristem was 0.50 MPa, while in well-watered leaves these values ranged from 0.03 to 0.23 MPa. Upon release from drought, wall-yield threshold pressure rapidly returned to unstressed values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号