首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study mechanisms of aromatase inhibition in brain cells, a highly effective non-steroidal aromatase inhibitor (Fadrozole; 4-[5,6,7,8-tetra-hydroimidazo-(1,5-a)-pyridin-5-yl] benzonitrile HCl; CGS 16949A) was compared with endogenous C-19 steroids, known to be formed in the preoptic area, which inhibit oestrogen formation. Using a sensitive in vitro tritiated water assay for aromatase activity in avian (dove) preoptic tissue, the order of potency, with testosterone as substrate was: Fadrozole (Ki < 1 × 10−9 M) > 4-androstenedione 5-androstanedione > 5-dihydrotestosterone (Ki = 6 × 10−8 M) > 5β-androstanedione > 5β-dihydrotestosterone (Ki = 3.5 × 10−7 M) > 5-androstane-3, 17β-diol (Ki = 5 × 10−6 M) > 5β-androstane-3β,17β-diol. Five other steroids, 5β-androstane-3,17β-diol, 5-androstane-3β,17β-diol, progesterone, oestradiol and oestrone, showed no inhibition at 10−4 M. The kinetics indicate that endogenous C-19 steroids show similar competitive inhibition of the aromatase as Fadrozole. Mouse (BALB/c) preoptic aromatase was also inhibited by Fadrozole. We conclude that endogenous C-19 metabolites of testosterone are effective inhibitors of the brain aromatase, and suggest that they bind competitively at the same active site as Fadrozole.  相似文献   

2.
Previous in vitro experiments showed that both, Taenia crassiceps and Taenia solium cysticerci have the ability to metabolize exogenous androstenedione to testosterone. Here we evaluate on the capacity of both cysticerci to synthesize several sex steroid hormones, using different hormonal precursors. Experiments using thin layer chromatography (TLC) showed that both cysticerci were able to produce 3H-hydroxyprogesterone, 3H-androstenedione and 3H-testosterone when 3H-progesterone was used as the precursor. They also synthesized 3H-androstenediol and 3H-testosterone when 3H-dehydroepiandrosterone was the precursor. In addition, both cysticerci interconverted 3H-estradiol and 3H-estrone. These results, strongly suggest the presence and activity of the Δ4 and Δ5 steroid pathway enzymes, 3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase-like enzyme (3β-HSD), that converts androstenediol into testosterone; and the 17β-hydroxysteroid dehydrogenase that interconverts estradiol and estrone, in both types of cysticerci.  相似文献   

3.
Antibodies to progesterone (P) and to 17-hydroxyprogesterone (17-OHP) were raised by immunization of rabbits with progesterone-7α-carboxyethyl thioether--bovine serum albumin (P-7—BSA) or with 17-OHP-7α-carboxyethyl thioether--BSA (17-OHP-7--BSA). The antisera produced were of high affinity: Ka towards the homologous hapten was 3. 7 × 1010 1./mol for the anti-P serum and 5. 9 × 109 1/mol for the anti-17-OHP serum. The antiserum to P-7—BSA displayed little or no cross reaction (?= 2%) with the 20α-, 20β- or 5β-dihydro-derivatives of progesterone, moderate cross-reaction with pregnenolone (4%), but considerable cross-reaction with 11-deoxycorticosterone (7%), 5α-dihydro-progesterone (11%) and 17-OHP (15%). The antiserum to 17-OHP-7--BSA showed very little cross-reaction (?= 2%) with progesterone and other steroids lacking a 17α-hydroxyl group, such as pregnenolone or 11-deoxycorticosterone, but reacted significantly with 17α, 21-dihydroxy-4-pregnene-3, 20-dione (8%) and 3β, 17-dihydroxy-5-pregnen-20-one (13%). None of the sera reacted with testosterone, cortisol or estradiol-17β. It appears that conjugation of progesterone to protein through carbon-7 affords antisera comparable in specificity to those raised with 11α-conjugates and superior to those raised with 3-, 6- and 20-conjugates. The antiserum to 17-hydroxyprogesterone described is the first one that specifically recognizes this metabolite.  相似文献   

4.
《Insect Biochemistry》1988,18(1):93-99
o-Pentafluorobenzyloxime (OPFB)-heptafluorobutyrylester (HFB)-derivatives were prepared from extracts of haemolymph from last instar larvae of Leptinotarsa decemlineata and subjected to negative ion chemical ionization capillary gas chromatography-mass spectrometry (NCI/GC-MS). Ten C21 and C19 steroids could be positively identified: testosterone, dehydroepiandrosterone, 5α-dihydrotestosterone, 11-ketotestosterone, 11β-hydroxytestosterone, androstenedione, progesterone, 17α-hydroxyprogesterone, pregnenolone and 17α,20β-dihydroprogesterone. No estrogens could be found in these larvae. Radioimmunoassay of chromatographed extracts of haemolymph taken from the larval and pupal stages showed fluctuations in testosterone (and 5α-dihydrotestosterone) titer.  相似文献   

5.
Intratumoral metabolism and synthesis of biologically active steroids such as estradiol and 5-dihydrotestosterone as a result of interactions of various enzymes are considered to play very important roles in the pathogenesis and development of hormone-dependent breast carcinoma. Among these enzymes involved in estrogen metabolism, intratumoral aromatase play an important role in converting androgens to estrogens in situ from serum and serving as the source of estrogens, especially in postmenopausal patients with breast carcinoma. However, other enzymes such as 17β-hydroxysteroid dehydrogenase (17β-HSD) isozymes, estrogen sulfatase (STS), and estrogen sulfotransferase, which contribute to in situ availability of biologically active estrogens, also play pivotal roles in this intratumoral estrogen production above. Androgen action on human breast carcinoma has not been well-studied but are considered important not only in hormonal regulation but also other biological features of carcinoma cells. Intracrine mechanisms also play important roles in androgen actions on human breast carcinoma cells. Among the enzymes involved in biologically active androgen metabolism and/or synthesis, both 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5; conversion from circulating androstenedione to testosterone) and 5-reductase (5Red; reduction of testosterone to DHT (5-dihydrotestosterone) were expressed in breast carcinoma tissues, and in situ production of DHT has been proposed in human breast cancer tissues. However, intracrine mechanisms of androgens as well as their biological or clinical significance in the patients with breast cancer have not been fully elucidated in contrast to those in estrogens.  相似文献   

6.
We have examined the metabolism in vitro of [4-14C]pregnenolone by the following organs of 2.4-year-old rats: submandibular gland, stomach, duodenum, liver, lung, heart, spleen, kidney, skin, prostate, testis and adrenal. All tissues converted pregnenolone to progesterone, the highest yields being observed with adrenal, testis and skin. Androgen formation was intense in the testis and absent in the adrenal. Moreover, 17-hydroxylation of pregnenolone occurred moderately in kidney, skin and submandibular gland and markedly in duodenum and stomach, which also produced high amounts of dehydroepiandrosterone and/or 5-androstene-3β,17β-diol. Extratesticular synthesis of androstenedione and testosterone was very low. A significant formation of 20-dihydropregnenolone was observed in all tissues but stomach, duodenum and steroidogenic endocrines. Corticosteroids were not synthesized extraadrenally, except a small amount of 11-deoxycorticosterone in the testis. These results indicate that key steroid-biosynthetic enzymes, such as 3β-hydroxysteroid dehydrogenase/Δ5′Δ4 isomerase, 17β- and 20-hydroxysteroid dehydrogenases and steroid 17-monooxygenase/17,20-lyase are also expressed extraglandularly in the rat.  相似文献   

7.
Using the antigens testosterone-17 beta-hemisuccinate and testosterone-3-(o-carboxymethyl) oxime, each coupled to bovine serum albumin, we have produced 44 monoclonal antibodies to testosterone. Of the 17 monoclonal antibodies raised against the 17 beta-linked antigen 8 showed extremely low affinity for testosterone (Ka less than or equal to 8 X 10(7) M-1) and none had an affinity greater than 5 X 10(9) M-1. Of the 27 monoclonal antibodies raised against the 3-linked antigen 2 had affinities less than 8 X 10(7) M, 7 had affinities greater than 5 X 10(9) M-1 and one had an affinity (Ka = 9 X 10(10) M-1) greater than that of a high affinity rabbit antiserum (Ka = 6 X 10(10) M-1). The affinity constant (Ka = 5 X 10(9) M-1) measured in the serum of the mouse whose spleen gave rise to the greatest number of high affinity antibodies, was significantly higher than those measured in the sera of the remaining mice (Ka = 0.7 - 3 X 10(8) M-1). The cross-reactions of the monoclonal antibodies varied widely but none showed an overall improvement in specificity when compared with the corresponding rabbit antisera. Results suggest that as well as the structure of the steroid antigen careful selection of the spleen donor facilitates the development of monoclonal antibodies with good binding characteristics.  相似文献   

8.
A blinded cooperative assay of several androstane and pregnane steroid metabolites has been carried out in order to determine whether 5β-H derivatives are as active as testosterone in stimulating in vivo erythropoiesis. The steroids tested were: testosterone, 5-dihvdrotestosterone, 5β-dihydrotestosterone, 5β-pregnane-3,20-dione, 3-dihydroxy-5β-pregnàne-11,20-dione and 3β-hydroxy-5β-pregnan-20-one. The incorporation of radioactive iron into newly formed red cells in exhypoxic polycythemic mice was used to compare the effects of the steroids. Testosterone and 5-dihydrotestosterone both produced significant increases in 59Fe incorporation. 5β-dihydrotestosterone, 5β-pregnane-3,20-dione, 3-hydroxy-5β-pregnane-11,20-dione and 3β-hydroxy-5β-pregnan-20-one were all devoid of significant erythropoietic activity in polycythemic mice in almost all instances. Thus, under the conditions chosen, this study failed to demonstrate that 5β-steroids increase radioactive iron incorporation in red cells of exhypoxic polycythemic mice.  相似文献   

9.
A radioimmunoassay (RIA) procedure has been developed for measurement of testosterone in male plasma after ether:chloroform (4:1) extraction of the plasma sample without resorting to chromatography. The highly specific anti-testosterone serum was generated from both rabbits and sheep immunized with 15β-carboxyethylmercapto-testosterone-BSA conjugate. The synthesis of 15β-carboxyethylmercaptotestosterone and the preparation of its BSA conjugate are described. The high affinity (Ka = 2.38 × 109 liters/mole) antiserum binds 50% of 50 picograms of tritiated testosterone at working dilutions of 1:100,000 to 1:200,000. Both 5α and 5β-dihydrotestosterone compounds exhibited less than 2% cross-reaction. The only other steroids that showed minor cross-reaction were 11β-hydroxytestosterone (3.8%), progesterone (2.1%), corticosterone (1.6%), and deoxycorticosterone (7.7%).  相似文献   

10.
A reduction of previously reported 2-methoxyethyl and 2-methylthioethyl functionalized zirconocenedichlorides (η5-C5Me4CH2CH2EMe)(η5-C5Me5)(ZrCl2 (E = O, S) and (η5-C5Me4CH2CH2EMe)(η5-C5Me4CH2CH2E′Me)ZrCl2 (E = O, S; E′ = O, S) with Mg/Hg in THF leads unexpectedly to the products of O---Me and S---Me bond cleavage (η5,σ-C5Me4CH2CH2E)(η5-C5Me5)ZrMe (E = O, S), (η5,σ-C5Me4CH2CH2E)(η5-C5Me4CH2CH2E′Me)ZrMe (E = O, S; E′ = O), and (η5,σ-C5Me4CH2CH2S)2Zr respectively. The crystal structure of (η5,σ-C5Me4CH2CH2S)2Zr was established by X-ray analysis. At that same time the reduction of (ηsu5-C5Me4CH2CH2EMe)(η5-C5Me5)ZrCl2 (E> = O, S) under 1 atm of CO gives either only the dicarbonyl derivative (η5-C5Me4CH2CH2EMe) (η5-C6Me5)Zr(CO)2 (E = O) or a complex mixture of products (E = S).  相似文献   

11.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

12.
17β-Hydroxysteroid dehydrogenase (17β-HSD) type 2 catalyzes the NAD+-dependent oxidation of androgens, estrogens and progestins, predominantly in the secretory endometrium, placenta, liver and small intestine. 17β-HSD type 3 catalyzes the NADPH-dependent conversion of androstenedione to testosterone in the testis, and the genetic disease 17β-HSD deficiency is caused by mutations in the 17β-HSD3 gene.  相似文献   

13.
Reactions of [(PPh3)2Pt(η3-CH2CCPh)]OTf with each of PMe3, CO and Br result in the addition of these species to the metal and a change in hapticity of the η3-CH2CCPh to η1-CH2CCPh or η1-C(Ph)=C=CH2. Thus, PMe3 affords [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+, CO gives both [trans-(PPh3)2Pt(CO)(η1-CH2CCPh)]+ and [trans-(PPh3)2Pt(CO)(η1-C(Ph)=C=CH2)]+, and LiBr yields cis-(PPh3)2PtBr(η1-CH2CCPh), which undergoes isomerization to trans-(PPh3)2PtBr(η1-CH2CCPh). Substitution reactions of cis- and trans-(PPh3)2PtBr(η1-CH2CCPh) each lead to tautomerization of η1-CH2CCPh to η1-C(Ph)=C=CH2, with trans-(PPh3)2PtBr(η1-CH2CCPh) affording [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+ at ambient temperature and the slower reacting cis isomer giving [trans-(PPh3)(PMe3)2Pt(η1-C(Ph)=C=CH2)]+ at 54 °C . All new complexes were characterized by a combination of elemental analysis, FAB mas spectrometry and IR and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The structure of [(PMe3)3Pt(η1-C(Ph)=C=CH2)]BPh4·0.5MeOH was determined by single-crystal X-ray diffraction analysis.  相似文献   

14.
Three antisera raised against bovine serum albumin (BSA) conjugates of testosterone-3-(O-carboxy-methyl)-oxime (T-3-CMO), 11 beta-hydroxytestosterone-11-carboxymethyl ether (T-11 beta-O-CME) and 19-hydroxytestosterone-19-carboxymethyl-ether (T-19-O-CME) were evaluated in enzyme immunoassays (EIAs) in combinations with penicillinase-labeled T-3-CMO, T-11 beta-O-CME, T-19-O-CME, and testosterone-17 beta-hemisuccinate (T-17 beta-HS) for their influence on the sensitivity and specificity of EIAs. Of the various combinations, anti-T-3-CMO antiserum along with T-11 beta-O-CME-penicillinase showed no cross-reaction with any of the closely related steroids, although the same antibody had 21.6% binding to 5 alpha-dihydrotestosterone (5 alpha-DHT) in radioimmunoassay. All the homologous combinations appeared to be less sensitive due to their low affinity for testosterone. It was also apparent that of all the heterologous systems tested, only two combinations, (a) anti-T-19-O-CME antiserum and T-3-CMO-penicillinase and (b) anti-T-3-CMO antiserum and T-11 beta-O-CME-penicillinase, were found to be more sensitive. The former was less specific; it showed 70% cross-reaction with 5 alpha-DHT. The ability of testosterone to displace the hapten-enzyme conjugate and the specificity of the assay appear to depend on the position of the enzyme label on the steroid molecule as well as on the availability of antigenic sites in particular combinations of antibody and hapten-enzyme conjugates.  相似文献   

15.
The lithiation of indole, using a slight excess of n-butyl lithium in THF, followed by methylation and reaction with [Cr(CO)6] in refluxing dibutyl ether, resulted in the formation of [Cr(η6-N-methylindole)(CO)3] (1a) and [Cr(η6-N-methyl-2-methylindole)(CO)3] (1b). In contrast, lithiation of quinoline in THF, silylation and the subsequent reaction with [Cr(CO)6] under similar reaction conditions, afforded [Cr(η6-N-trimethylsilyl-2-butyl-1,2-dihydroquinoline)(CO)3] (2) and [Cr(η6-{2-butyl-1,2,3,4-tetrahydroquinoline})(CO)3] (3). The formation of [Cr(η6-2,2′-bis{N-methylindolyl})(CO)3] (4) implied lithiation at the 2-position of 1a. However, metallation at the 7-position was also indicated during the same reaction. In the presence of [Mn(CO)5Br], product 4 and the transmetallation product [Cr(η6-{7-(N-methylindolyl)Mn(CO)5})(CO)3] (5) were isolated. Reaction with titanocene dichloride gave [Cr(η6-{2-(N-methylindolyl)TiCp2Cl})(CO)3] (6), which slowly converted into [TiCp2{Cr(η6-2-(N-methylindolyl)(CO)3}2] (7).  相似文献   

16.
In on-going studies of ‘classical’ and ring B-unsaturated oestrogens in equine pregnancy, the products of metabolism of [2,2,4,6,6-2H5]-testosterone and [16,16,17-2H3]-5,7-androstadiene-3β,17β-diol with equine placental subcellular preparations and allantochorionic villi have been identified. Using mixtures of unlabelled and [2H]-labelled steroid substrates has allowed the unequivocal identification of metabolites by twin-ion monitoring in gas chromatography–mass spectrometry (GC–MS). Two types of incubation were used: (i) static in vitro and (ii) dynamic in vitro. The latter involved the use of the Oxycell™ cartridge (Integra Bioscience Systems, St Albans, UK) whereby the tissue preparation was continuously supplied with supporting medium plus appropriate cofactors in the presence of uniform oxygenation. [2H5]-Testosterone was converted into [2H4]-oestradiol-17β, [2H4]-oestrone and [2H3]-6-dehydro-oestradiol-17 in both placental and chorionic villi preparations, but to a greater extent in the latter, confirming the importance of the chorionic villi in oestrogen production in the horse.

On the basis of GC–MS characteristics (M+ m/z 477/482 (as O-methyl oxime-trimethyl silyl ether), evidence for 19-hydroxylation of testosterone was found in static incubations, while the presence of a 6-hydroxy-oestradiol-17 was recorded in dynamic incubations (twin peaks in the mass spectrum at m/z 504/507, the molecular ion M+). It was not possible to determine the configuration at C-6. The formation of small, but significant, quantities of [2H4]-17β-dihydroequilin was also shown, and a biosynthetic pathway is proposed.

In static incubations of placental microsomal fractions, the 17β-dihydro forms of both equilin and equilenin were shown to be major metabolites of [2H3]-5,7-androstadiene-3,17-diol. Using static incubations of chorionic villi, the deuterated substrate was converted into the 17β-dihydro forms of both equilin and equilenin, together with an unidentified metabolite (base peak, m/z 504/506). The isomeric 17-dihydroequilins were also obtained using the dynamic in vitro incubation of equine chorionic villi, together with the 17β-isomer of dihydroequilenin. Confirmation of the identity of 17β-dihydroequilin and 17β-dihydroequilenin was obtained by co-injection of the authentic unlabelled steroids with the phenolic fraction obtained from various incubations. Increases in the peak areas for the non-deuterated steroids (ions at m/z 414 (17β-dihydroequilin) and 412 (17β-dihydroequilenin) (both as bis-trimethyl silyl ether derivatives) were observed. Biosynthetic pathways for formation of the ring B-unsaturated oestrogens from 5,7-androstadiene-3β,17β-diol are proposed.  相似文献   


17.
18.
The reaction of perrhenate with 2-hydrazinopyrimidine in MeOH–HCl yields [ReCl31-NNC4H3N2H)(η2-HNNC4H3N2)] (1). The analogous reaction with Na2MoO4 yields [MoCl31-NNC4H3N2H)(η2-HNNHC4H3N2)] (1a). The reaction of 1 with pyrimidine-2-thiol and triethylamine produces [Re(η1-C4H3N2S)(η2-C4H3N2S)(η1-NNC4H3N2)(η2-HNNC4H3N2)] (2), while reaction of 1 with the Schiff base HSC6H4N=C(H)C6H4OH provides [Re(η3-SC6H4N=C(H)C6H4O)(η1-NNC4H3N2)(η2-HNNC4H3N2)]·0.6CH2Cl2 (3·0.6CH2Cl2). The analogous hydrazinopyridine complex of the Schiff base, [Re(η3-SC6H4N=C(H)C6H4O)(η1-NNC5H4N)(η2-HNNC5H4N)] (4), was also synthesized by reacting [ReCl31-NNC5H4NH)(η2-HNNC5H4N)] with HSC6H4N=C(H)C6H4OH. The crystal structures of 1–4 have been determined.  相似文献   

19.
The concentrations of metabolites in the pregnenolone → testosterone pathway were determined in freezestopped testes in control rats and during ethanol intoxication (2 h after injection of 1.5 g ethanolkg body wt). Ethanol lowered the mean testicular concentrations of testosterone (by 63–74%), androstenedione (49–81%), 17-hydroxyprogesterone (60–76%), progesterone (29–67%) and pregnenolone (12–25%). 4-Methylpyrazole had no effect on the ethanol-induced changes. The present results reveal no inhibition at the 17-hydroxyprogesterone → androstenedione → testosterone steps, but do not exclude inhibition before the step yielding pregnenolone and at the pregnenolone → progesterone → 17-hydroxyprogesterone steps.  相似文献   

20.
Manganese tricarbonyl complexes (η5-C5H4CH2CH2Br)Mn(CO)3 (3) and (η5-C5H4CH2CH2I)Mn(CO)3 (4), with an alkyl halide side chain attached to the cyclopentadienyl ligand, were synthesized as possible precursors to chelated alkyl halide manganese complexes. Photolysis of 3 or 4 in toluene, hexane or acetone-d6 resulted in CO dissociation and intramolecular coordination of the alkyl halide to manganese to produce (η51-C5H4CH2CH2Br)Mn(CO)2 (5) and (η51-C5H4CH2CH2I)Mn(CO)2 (6). Low temperature NMR and IR spectroscopy established the structures of 5 and 6. Photolysis of 3 in a glass matrix at 91 K demonstrated CO release from manganese. Low temperature NMR spectroscopy established that the coordinated alkyl halide complexes are stable to approximately −20°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号