首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternating zinc-finger motifs in the human male-associated protein ZFY   总被引:1,自引:0,他引:1  
  相似文献   

2.
ZFY, a sex-related Zn-finger protein encoded by the human Y chromosome, is distinguished from the general class of Zn-finger proteins by the presence of a two-finger repeat. Whereas odd-numbered domains and linkers fit a general consensus, even-numbered domains and linkers exhibit systematic differences. Because this alternation may have fundamental implications for the mechanism of protein-DNA recognition, we have undertaken biochemical and structural studies of fragments of ZFY. We describe here the solution structure of a representative nonconsensus (even-numbered) Zn finger based on 2D NMR studies of a 30-residue peptide. Structural modeling by distance geometry and simulated annealing (DG/SA) demonstrates that this peptide folds as a miniglobular domain containing a C-terminal beta--hairpin and N-terminal alpha-helix (beta beta alpha motif). These features are similar to (but not identical with) those previously described in consensus-type Zn fingers (derived from ADR1 and Xfin); the similarities suggest that even and odd ZFY domains bind DNA by a common mechanism. A model of the protein-DNA complex (designated the "jumping-linker" model) is presented and discussed in terms of the ZFY two-finger repeat. In this model every other linker is proposed to cross the minor groove by means of a putative finger/linker submotif HX4HX3-hydrophobic residue-X3. Analogous use of a hydrophobic residue in a linker that spans the minor groove has recently been described in crystallographic and 3D NMR studies of homeodomain-DNA complexes. The proposed model of ZFY is supported in part by the hydroxyl radical footprint of the TFIIIA-DNA complex [Churchill, M.E.A., Tullius, T.D., & Klug, A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 5528-5532].  相似文献   

3.
ZFY, a male-associated Zn-finger protein encoded by the human Y chromosome, exhibits a distinctive two-finger repeat: whereas odd-numbered domains fit a general consensus, even-numbered domains exhibit systematic differences. Do these odd and even sequences encode structurally distinct surfaces for DNA recognition? As a first step toward answering this question, we have recently described the sequential 1H NMR assignment of a representative nonconsensus Zn finger (designated ZFY-6T) based on 2D NMR studies of a 30-residue peptide [Kochoyan, M., Havel, T.F., Nguyen, D.T., Dahl, C.E., Keutmann, H. T., & Weiss, M.A. (1991) Biochemistry 30, 3371-3386]. Initial structural modeling by distance geometry/simulated annealing (DG/SA) demonstrated that this peptide retained the N-terminal beta-hairpin and C-terminal alpha-helix (beta beta alpha motif) observed in consensus Zn fingers. However, the precision of this initial structure was limited by resonance overlap, which led to ambiguities in the assignment of key NOEs in the hydrophobic core. In this paper these ambiguities are resolved by selective deuterium labeling, enabling a refined structure to be calculated by DG/SA and restrained molecular dynamics. These calculations provide a detailed view of the hydrophobic core and protein surface, which are analyzed in reference to previously characterized Zn fingers. Variant (even) and consensus (odd) aromatic residues Y10 and F12, shown in an "aromatic swap" analogue to provide equivalent contributions to the hydrophobic core [Weiss, M.A., & Keutmann, H.T. (1990) Biochemistry 29, 9808-9813], nevertheless exhibit striking differences in packing interactions: Y10--but not F12--contributes to a contiguous region of the protein surface defined by putative specificity-determining residues. Alternating surface architectures may have implications for the mechanism of DNA recognition by the ZFY two-finger repeat.  相似文献   

4.
The classical Zn finger contains a phenylalanine at the crux of its three architectural elements: a beta-hairpin, an alpha-helix, and a Zn(2+)-binding site. Surprisingly, phenylalanine is not required for high-affinity Zn2+ binding, but instead contributes to the specification of a precise DNA-binding surface. Substitution of phenylalanine by leucine leads to a floppy but native-like structure whose Zn affinity is maintained by marked entropy-enthalpy compensation (DeltaDeltaH -8.3 kcal/mol and -TDeltaDeltaS 7.7 kcal/mol). Phenylalanine and leucine differ in shape, size, and aromaticity. To distinguish which features correlate with dynamic stability, we have investigated a nonstandard finger containing cyclohexanylalanine at this site. The structure of the nonstandard finger is similar to that of the native domain. The cyclohexanyl ring assumes a chair conformation, and conformational fluctuations characteristic of the leucine variant are damped. Although the nonstandard finger exhibits a lower affinity for Zn2+ than does the native domain (DeltaDeltaG -1.2 kcal/mol), leucine-associated perturbations in enthalpy and entropy are almost completely attenuated (DeltaDeltaH -0.7 kcal/mol and -TDeltaDeltaS -0.5 kcal/mol). Strikingly, global changes in entropy (as inferred from calorimetry) are in each case opposite in sign from changes in configurational entropy (as inferred from NMR). This seeming paradox suggests that enthalpy-entropy compensation is dominated by solvent reorganization rather than nominal molecular properties. Together, these results demonstrate that dynamic and thermodynamic perturbations correlate with formation or repair of a solvated packing defect rather than type of physical interaction (aromatic or aliphatic) within the core.  相似文献   

5.
Wild populations of Akodon azarae comprise females with a karyotype indistinguishable from that of males. These individuals were formerly assumed to be Xx, the x being an X chromosome with a deletion of most of its long arm. By using a DNA probe derived from the testis-determining region of the human Y chromosome (comprising a candidate gene for the testis-determining factor, Y-linked zinc finger [ZFY]), we demonstrate that A. azarae gonosomally variant females are XY and not Xx. The ZFY sequences in A. azarae are amplified and located in two different families of EcoRI fragments derived from Y-chromosome DNA. No rearrangement or change in the state of methylation of ZFY or ZFX (X-linked zinc finger) sequences were found in XY females. We propose that sex reversal in A. azarae may be mediated by a gene or genes other than ZFX or ZFY.  相似文献   

6.
The Zn finger provides a model for studies of protein structure and stability. Its core contains a conserved phenylalanine residue adjoining three architectural elements: a beta-hairpin, an alpha-helix and a tetrahedral Zn(2+)-binding site. Here, we demonstrate that the consensus Phe is not required for high-affinity Zn(2+) binding but contributes to the specification of a precise DNA-binding surface. Substitution of Phe by leucine in a ZFY peptide permits Zn(2+)-dependent folding. Although a native-like structure is retained, structural fluctuations lead to attenuation of selected nuclear Overhauser enhancements and accelerated amide proton exchange. Surprisingly, wild-type Zn affinity is maintained by entropy-enthalpy compensation (EEC): a hidden entropy penalty (TDeltaDeltaS 7kcal/mol) is balanced by enhanced enthalpy of association (DeltaDeltaH -7kcal/mol) at 25 degrees C. Because the variant is less well ordered than the Phe-anchored domain, the net change in entropy is opposite to the apparent change in configurational entropy. By analogy to the thermodynamics of organometallic complexation, we propose that EEC arises from differences in solvent reorganization. Exclusion of Leu among biological sequences suggests an evolutionary constraint on the dynamics of a Zn finger.  相似文献   

7.
A growing body of evidence suggests the involvement of sex chromosome genes in mammalian development. We report the cloning and characterization of the complete coding regions of the bovine Y chromosome ZFY and X chromosome ZFX genes, and partial coding regions of porcine and equine ZFX and ZFY genes. Bovine ZFY and ZFX are highly similar to each other and to ZFX and ZFY from other species. While bovine and human ZFY proteins are both 801 amino acids long, bovine ZFX is 5 amino acids shorter than human ZFX. Like in humans, both bovine ZFY and ZFX contain 13 zinc finger motifs and belong to the Krueppel family of C2H2-type zinc finger proteins. The internal exon-intron organization of the bovine, porcine and equine ZFX and ZFY genes has been determined and compared. Within this region, the exon lengths and the positions of the splice sites are conserved, further suggesting a high evolutionary conservation of the ZFX and ZFY genes. Additionally, new alternatively spliced forms of human ZFX have been identified.  相似文献   

8.
An inexpensive, time-saving and reliable method, polymerase chain reaction with confronting two-pair primers (PCR-CTPP), was developed for sex identification in tiger (Panthera tigris) based on zinc finger alleles (ZFX/ZFY). A site of “C/G” transversion representing fixed differences that discriminated between ZFX and ZFY exons among felids was identified for primers designing. This primer set was successfully tested on samples including blood, shed hairs, dried skin, and stool which contained potential contamination caused by prey DNA. Cross species tests shown that this primer set was also useful for sex identification in four other endangered felids.  相似文献   

9.
ZFY, a gene on the Y chromosome encoding a zinc finger protein, has been proposed as a candidate for the human testis determining gene. Sequences related to ZFY, called ZFX, are present on the X chromosome of a wide range of placental mammals. Unlike most mammals the mouse has four genes homologous to ZFY; two on the Y chromosome, Zfy-1 and Zfy-2, an X-linked gene, Zfx, and an autosomal gene, Zfa. We show here that Zfa has arisen recently by retroposition of one of at least three alternatively spliced mRNAs transcribed from the Zfx gene. Zfa is an unusual retroposon in that it has retained an open reading frame and is expressed, although its function may be limited or altered by the presence of a potentially inactivating mutation in the third of its zinc fingers. This mutation must have occurred at the same time or soon after the retroposition event as it is also present in the Zfa gene of Mus spretus. Interestingly the third finger of the M. musculus musculus Zfy-2 gene has also sustained a mutation suggesting that this gene family may be rapidly evolving in mice.  相似文献   

10.
It has been reported recently that Sb(III) competes with Zn(II) for its binding to the CCHC zinc finger domain of the HIV-1 NCp7 protein, suggesting that zinc finger proteins may be molecular targets for antimony-based drugs. Here, the interaction of Sb(III) with a CCCH zinc finger domain, which is considered to play a crucial role in the biology of kinetoplastid protozoa, has been characterized for the first time. The binding characteristics of Sb(III) were compared between a CCCH-type peptide derived from a kinetoplastid protein and two different CCHC-type zinc finger peptides. The formation of 1 : 1 Zn-peptide and Sb-peptide complexes from the different peptides was demonstrated using circular dichroism, UV absorption, fluorescence spectroscopies and ESI-MS. Titration of the Zn-peptide complexes with SbCl(3) was performed at pH 6 and 7, exploiting the intrinsic fluorescence of the peptides. The differential spectral characteristics of the peptides allowed for competition experiments between the different peptides for binding of Zn(II). The present study establishes that Sb(III) more effectively displaces Zn(II) from the CCCH peptide than CCHC ones, as a result of both the greater stability of the Sb-CCCH complex (compared to Sb-CCHC complexes) and the lower stability of the Zn-CCCH complex (compared to Zn-CCHC complexes). Comparison of the binding characteristics of Sb(III) or Zn(II) between the CCHC-type peptides with different amino acid sequences supports the model that not only the conserved zinc finger motif, but also the sequence of non-conserved amino acids determines the binding affinity of Sb(III) and Zn(II). These data suggest that the interaction of Sb(III) with CCCH-type zinc finger proteins may modulate, or even mediate, the pharmacological action of antimonial drugs.  相似文献   

11.
X Qian  M A Weiss 《Biochemistry》1992,31(33):7463-7476
Solution structures of mutant Zn fingers containing aromatic substitutions in the hydrophobic core are determined by 2D-NMR spectroscopy and distance-geometry/simulated annealing (DG/SA). The wild-type domain (designated ZFY-6) is derived from the human male-associated protein ZFY and represents a sequence motif (Cys-X2-Cys-X-Ar-X7-Leu-X2-His-X4-His) that differs from the consensus (Cys-X2,4-Cys-X3-Phe-X5-Leu-X2-His-X3-His) in the location ("aromatic swap") and diversity (Ar = tyrosine, phenylalanine, or histidine) of the central aromatic residue (underlined). In a given ZFY domain the choice of a particular aromatic residue is invariant among vertebrates, suggesting that alternative "swapped" aromatic residues are functionally inequivalent. 2D-NMR studies of analogues containing tyrosine, phenylalanine, or histidine at the swapped site yield the following results. (i) The three DG/SA structures each retain the beta beta alpha motif and exhibit similar staggered-horizontal packing between the variant aromatic residue and the proximal histidine in the hydrophobic core. (ii) The structures and stabilities of the tyrosine and phenylalanine analogues are essentially identical, differing only by local exposure of polar (Tyr p-OH) or nonpolar (Phe p-H) surfaces. (iii) The dynamic stability of the histidine analogue is reduced as indicated by more rapid protein-deuterium exchange of hydrogen bonds related to secondary structure and amide-sulfur coordination (slowly exchanging amide resonances in D2O) and by more extensive averaging of main-chain dihedral angles (3J alpha NH coupling constants). An aspartic acid in the putative DNA recognition surface, whose configuration is well-defined as a possible helix N-cap in the tyrosine and phenylalanine analogues, exhibits multiple weak main-chain contacts in the NOESY spectrum of the histidine analogue; such NOEs are geometrically inconsistent and so provide complementary evidence for structural fluctuations. (iv) Because the three DG ensembles have similar apparent precision, the finding of reduced dynamic stability in the histidine analogue emphasizes the importance of experiments that directly probe fluctuations at several time scales. Our results provide insight into the design of biological metal-binding sites and the relationship of protein sequence to structure and dynamics.  相似文献   

12.
13.
The ZFY gene family in humans and mice   总被引:3,自引:0,他引:3  
For several years, ZFY (zinc finger gene on the Y chromosome) was considered the best candidate for the human testis-determining gene TDF. This gene and its close relatives have been intensely studied in the hope of understanding the molecular biology of sex determination, particularly in humans and mice. Now that there is overwhelming evidence that ZFY and TDF are distinct loci, we are left with a large body of data, and a question: what do these genes really do?  相似文献   

14.
The core of retroviruses contains a highly conserved, low molecular weight, basic protein that binds nucleic acids and is essential for genomic RNA packaging. The 56 amino acid protein, NCp10, of Moloney Murine Leukaemia virus (MoMuLV) has the CysX2 CysX4 HisX4 Cys zinc finger-like motif shared by all retrovirus nucleocapsid proteins. The native protein and five modified peptides containing the zinc binding domain were synthesized by solid phase in order to investigate the structural and biochemical role of Zn2+ chelation in MoMuLV NCp10 activity. The purity of the synthetic molecules was verified by HPLC and their sequences were confirmed by amino acid analysis and sequencing in the case of NCp10. Thiol dosage agreed with the theoretical value of free cysteine for all these molecules. Fluorescence measurements performed on synthetic NCp10 and zinc finger fragments showed that the tryptophan quantum yield was Zn2(+)-dependent, allowing a 1:1 stoichiometry for the complex to be determined. The apparent affinity constant of NCp10 for the metal was estimated to be superior to 10(6) M-1. The synthetic protein, in the presence of Zn2+ ions, possesses all the biological properties of NCp10 isolated from virions. It catalyzes both the MoMuLV RNA dimerization and the annealing of the replication primer tRNA(Pro) onto MoMuLV RNA.  相似文献   

15.
16.
Studies on demographic population history and gene flow among populations often rely exclusively on matrilinearly inherited mitochondrial DNA markers. However, by excluding patrilines, such approach introduces an analytical bias into the study. To overcome this bias, we established a set of ten Y-chromosomal markers for the European brown hare (Lepus europaeus), which comprises of three overlapping fragments spanning over the sex-determining region Y, five microsatellite loci (LeMS-Y), and two introns of the Y-linked zinc finger protein (LeZFY). Besides the generation of male specific fragments, both the ZFY and the LeMS-Y01 primer pairs also generated amplification products in females, which are visible in standard agarose gels. These polymerase chain reaction (PCR) products were easily distinguishable from the Y-specific amplicons and thus can function as internal positive PCR control in molecular sexing.  相似文献   

17.
The GAGA factor of Drosophila melanogaster uses a single Cys2-His2-type zinc finger for specific DNA binding. Comparative sequence alignment of the GAGA zinc finger core with other structurally characterized zinc fingers reveals that the beta-hairpin of the GAGA zinc finger prefers amino acids with an aliphatic side-chain different from those of other zinc fingers. To probe the substitution effect of aromatic amino acids in the beta-hairpin on the DNA binding, three mutant peptides were designed by substituting consensus phenylalanine, an aromatic amino acid, at key positions in the beta-hairpin region. The metal-binding and the overall fold of the mutant peptides are very similar to those of the wild-type as shown by UV-vis absorption spectroscopy and circular dichroism spectroscopy. However, the gel mobility shift assay and isothermal calorimetric studies demonstrated that none of the mutants are able to bind the cognate DNA substrate, although the mutation is confined only to the beta-hairpin region. The present results suggest that the nature of the amino acids in the beta-hairpin plays an important role in the DNA-binding of the GAGA factor protein.  相似文献   

18.
19.
We have sequenced the partial exon of the zinc finger genes (ZFX and ZFY) in 5 hominoids, 2 Old World monkeys, 1 New World monkey, and 1 prosimian. Among these primate species, the percentage similarities of the nucleotide sequence of the ZFX gene were 96-100% and 91.2-99.7% for the ZFY gene. Of 397 sites in the ZFX and ZFY gene sequences, 20 for ZFX gene and 42 for ZFY gene were found to be variable. Substitution causes 1 amino acid change in ZFX, and 5 in ZFY, among 132 amino acids. The numbers of synonymous substitutions per site (Ks) between human and the chimpanzee, gorilla and orangutan for ZFY gene were 0.026, 0.033, and 0.085, respectively. In contrast, the Ks value between human and hominoid primates for the ZFX gene was 0.008 for each comparison. Comparison of the ZFX and ZFY genes revealed that the synonymous substitution levels were higher in hominoids than in other primates. The rates of synonymous substitution per site per year were higher in the ZFY exon than in the SRY exon, and higher in the ZFY exon than in the ZFY intron, in hominoid primates.  相似文献   

20.
The two highly conserved Zn(2+) finger motifs of the HIV-1 nucleocapsid protein, NCp7, strongly bind Zn(2+) through coordination of one His and three Cys residues. To further analyze the role of these residues, we investigated the Zn(2+) binding and acid-base properties of four single-point mutants of a short peptide corresponding to the distal finger motif of NCp7. In each mutant, one Zn(2+)-coordinating residue is substituted with a noncoordinating one. Using the spectroscopic properties of Co(2+), we first establish that the four mutants retain their ability to bind a metal cation through a four- or five-coordinate geometry with the vacant ligand position(s) presumably occupied by water molecule(s). Moreover, the pK(a) values of the three Cys residues of the mutant apopeptide where His44 is substituted with Ala are found by (1)H NMR to be similar to those of the native peptide, suggesting that the mutations do not affect the acid-base properties of the Zn(2+)-coordinating residues. The binding of Zn(2+) was monitored by using the fluorescence of Trp37 as an intrinsic probe. At pH 7.5, the apparent Zn(2+) binding constants (between 1.6 x 10(8) and 1.3 x 10(10) M(-)(1)) of the four mutants are strongly reduced compared to those of the native peptide but are similar to those of various host Zn(2+) binding proteins. As a consequence, the loss of viral infectivity following the mutation of one Zn(2+)-coordinating residue in vivo may not be related to the total loss of Zn(2+) binding. The pH dependence of Zn(2+) binding indicates that the coordinating residues bind Zn(2+) stepwise and that the free energy provided by the binding of a given residue may be modulated by the entropic contribution of the residues already bound to Zn(2+). Finally, the pK(a) of Cys49 in the holopeptide is found to be 5.0, a value that is at least 0.7 unit higher than those for the other Zn(2+)-coordinating residues. This implies that Cys49 may act as a switch for Zn(2+) dissociation in the distal finger motif of NCp7, a feature that may contribute to the high susceptibility of Cys49 to electrophilic attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号