首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Tissue-culture methods can be used to test the developmental capacity of embryonic cells. In micro-mass cultures, derived from wing cells of stages 21 through 24 chick embryos, aggregates of cells form and then differentiate into cartilage nodules, as judged by the presence of an Alcian blue staining extracellular matrix. Wing cells derived from embryos as young as stage 17 can form aggregates. However, unless they are treated with db cyclic AMP and theophylline, it is not until stage 20 that these aggregates can produce cartilage in culture. In clonal cell culture, cartilage colonies are not produced by primary cell suspensions of limb cells until stage 25 when overt cartilage differentiation is occurring in vivo. It is possible to obtain clonable cartilage cells from limb cells from embryos between stages 20 and 24 if the cells are either treated with db cyclic AMP and theophylline or maintained in suspension culture for 12 to 48 hr. On the basis of these in vitro results a multiple step model for the conversion of limb mesenchyme into cartilage cells is proposed. The model involves the appearance of cells with a predisposition to form aggregates, development of the capacity to form cartilage in response to elevated levels of cyclic AMP, the appearance of receptors that translate changes in either cell shape or cell cycle parameters into elevated levels of cyclic AMP, aggregation, elevated levels of cyclic AMP, cartilage cell determination, and differentiation. This model can serve as the basis for further tests. Presented in the Opening Symposium on Nutritional Factors and Differentiation at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. This work was supported by USPHS Training Grant HD00152 from the National Institute of Child Health and Human Development, while P.B.A. was a postdoctoral trainee, and by NIH Grant HD05505 to M.S.  相似文献   

2.
Dissociated stage 21–28 chick embryo limb bud cells showed an increasing ability to produce cartilage colonies in vitro with in vivo maturation. In addition dissociated stage 21–28 chick embryo limb bud cells exposed to cartilage conditioned medium continuously or only for 48 hr prior to subculture showed an enhanced (as much as 15-fold) ability to form differentiated cartilage colonies. By this criterion, cells were more responsive to conditioned medium prior to stage 25. Conditioned medium from fibroblast cultures caused an inhibition of cartilage colony formation, suggesting that the effect is cell-type specific. Besides increasing cartilage colony formation by enhanced cell survival, the incorporation of S35O4 into isolated glycosaminoglycans is also stimulated when limb bud cells are exposed to cartilage conditioned medium. The results support a model for cell differentiation which involves the enhancement of a particular differentiated capacity by a diffusible cell-type-specific macromolecule.  相似文献   

3.
The requirement for homotypic cell interaction was studied by making chimeric micromass cultures containing various proportions of chick and quail limb mesenchyme. Cultures made from limb mesenchyme from embryos of Hamburger and Hamilton stages 23–24 produce large clumps of cartilage cells, identified by the accumulation of an extracellular matrix which stains with alcian blue at pH 1 and by the ability of cells to take up 35SO4 rapidly, as demonstrated autoradiographically. Dissociated mesenchyme from stage 19 embryos did not produce cartilage in micromass cultures, but only precartilage cell aggregates. Micromass cultures prepared from mixtures of mesenchyme cells obtained from stage 19 and stages 23–24 embryos contained decreasing numbers of cartilage nodules as the proportion of stage 19-derived mesenchyme increased. At the same time the number of aggregates was not affected. When the ratio of stage 19- to stage 24-derived cells was 3:1 or greater, no nodules were detected. The actual number of cells from each stage was verified by using mixtures of quail and chick cells, which are microscopically distinguishable. Additional evidence suggests that the stage 19-derived mesenchyme inhibits chondrogenesis by passively preventing stage 24-derived cells from interacting. The results presented are consistent with the suggestions that (1) homotypic cell interaction plays a role in limb chondrogenesis and (2) the capacity to interact in the required manner is acquired after the embryos have reached stage 19. These phenomena might be involved in the normal histogenesis of cartilage tissue.  相似文献   

4.
We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences, probably inhibitory in nature, must regulate chondrogenesis in mesectodermal derivatives. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Mesodermal cells in the developing chick embryo limb bud appear morphologically homogeneous until stage 21. At stage 22 the prechondrogenic and premyogenic areas begin to condense, culminating in the appearance of cartilage and muscle by stage 25-26. We have examined changes in the hyaluronate-dependent pericellular matrices elaborated by mesodermal cells of the limb bud from different developmental stages and the corresponding changes in production of cell surface-associated and secreted glycosaminoglycans. When placed in culture, most early mesodermal cells (stage 17 lateral plate and stage 19 limb bud) exhibited pericellular coats as visualized by the exclusion of particles. These coats were removed by treatment of the cultures with Streptomyces hyaluronidase. Cells from stage 20-21 limb buds (precondensation) had smaller coats, whereas cells derived from stage 22, 24, and 26 limb buds (condensed chondrogenic and myogenic regions) lacked coats. However, coats were reformed during subsequent cytodifferentiation of chondrocytes; chondrocytes from stage 28 and 30 limb buds, and more mature chondrocytes from stage 38 tibiae, had pericellular coats. Thus, cytodifferentiation of cartilage is accompanied by extensive intercellular matrix accumulation in vivo and reacquisition of pericellular coats in vitro. Although their structure was still dependent on hyaluronate, chondrocyte coats were associated with increased proteoglycan content compared to the coats of early mesodermal cells. The amount of incorporation of [3H]acetate into cell surface hyaluronate remained relatively constant from stages 17 to 38, whereas in the medium compartment, incorporation into hyaluronate was more than 4-fold greater by stage 17 and 19 mesodermal cells than by cells from stages between 20 and 38. However, there was a progressive increase in incorporation into cell surface and medium chondroitin sulfate throughout these developmental stages. Thus, at the time of cellular condensation in the limb bud in vivo, we have observed a reduction in size of hyaluronate-dependent pericellular coats and a dramatic change in the relative proportion of hyaluronate and chondroitin sulfate produced by the mesodermal cells in vitro.  相似文献   

6.
Osteogenesis in cultures of limb mesenchymal cells   总被引:9,自引:0,他引:9  
The results of previous reports demonstrated that osteoblasts develop in cultures derived from phenotypically unexpressive stage 24 chick limb mesenchymal cells. The observations reported here suggest that initial cell plating densities may provide environmental conditions deterministic to a particular limb phenotype. Quantitative microscopic studies, histochemical localization of calcium phosphate, and electron microscopy indicate that osteoblasts develop in cultures derived from stage 24 limb mesenchymal cells. Additionally, 1–3% of the cells from stage 24 limbs are associated with mineral deposits when plated at initial high densities (5 × 106 cells per 35-mm culture dish), while more than 50% of the cells are associated with cartilage by Day 9. Cultures plated at intermediate seeding densities (between 2.0 and 2.5 × 106 cells per 35-mm culture dish) have minimal cartilage development, and approximately 20% of the cells are associated with mineral by Day 9. Furthermore, cultures prepared from stage 31 limb mesenchymal cells form well-developed bone nodules with both osteoblasts and osteocytes present, but no cartilage. It is clear from these observations and from a consideration of the initiation of osteogenesisin vivo that the initiation of bone development in the limb is not associated with cartilage development. Based on these studies and observations on the effect of nutrient factors on phenotypic expression in culture, an hypothesis is presented relating differential vascularization and nutrient flow to the determination of limb phenotypesin vivo.  相似文献   

7.
Osteogenin is a protein isolated from demineralized bovine bone matrix. When implanted in rats, osteogenin induces the differentiation of cartilage and formation of endochondral bone. When added to stage 24 and 25 chick limb bud mesoderm cells in culture, it stimulated synthesis of sulfated proteoglycans by over 10-fold without stimulating cell division. The increase was detected after only 2 days in culture. Morphologically, in the presence of osteogenin, all cells in the culture appeared to form cartilage, rather than the nodules of cartilage surrounded by noncartilage areas in control cultures. The distribution of type II collagen correlated with the morphological differentiation of cartilage. When nonchondrocyte and chondrocyte cell populations were separated, osteogenin stimulated sulfated proteoglycan synthesis in all populations of cells. However, the greatest stimulation (24-fold) was seen in the originally nonchondrocyte population, which apparently still had some potential to form cartilage. In this study, chick limb bud mesoderm cells in vitro responded to osteogenin, a protein derived from adult bovine bone matrix. The cells that were responsive included those that initially did not form cartilage. Osteogenin belongs to a superfamily of proteins, many of which are important in development. It is possible that osteogenin has a role in embryonic cartilage development.  相似文献   

8.
Differences are demonstrated in the chondrogenic potential of cells derived from the distal and proximal halves of chick wing buds from as early as stage 23, prior to the appearance of overt cartilage differentiation. In high cell density cultures, cells obtained from the distal portions of stage 23 or 24 limb buds are spontaneously chondrogenic in micromass cultures. Cells obtained from the proximal portions, however, become blocked in their differentiation as protodifferentiated cartilage cels, since these cells in micromass cultures make detectable type II collagen, but fail to synthesize significant levels of cartilage proteoglycan or to accumulate an extracellular matrix that will stain for sulfated glycosaminoglycans. Such cultures of proximal limb bud cells can be stimulated to form alcian blue staining nodules by the addition of 1 mM dbcAMP or 50 micrograms/ml ascorbate, or by mixing proximal cells with small numbers of distal cells (1 distal cell to 10 proximal cells). These results demonstrate the existence of two distinct stages among prechondrogenic mesenchyme cells. The earlier stage appears to be able to provide a chondrogenic stimulus to proximal cells.  相似文献   

9.
The cartilage pattern of the developing chick limb changes along the proximal-distal (PD) axis. It is assumed that these spatial changes are brought about by differences in the cellular properties of distal mesoderm, the progress zone (PZ). To examine whether these differences are actually maintained in the individual cells composing the PZ, we dissociated early (stage 20) and late (stage 25) PZ tissues into single cells, then mixed and recombined them with ectodermal jackets. The recombinants were grafted to limb bud stumps and allowed to develop into limb-like structures. Early PZ cells were distributed within whole cartilage elements along the PD axis of the limb-like structures, while cells from late PZ participated only in the formation of distal cartilage elements.
A difference in distribution pattern between the cells of early and late PZ in mixed culture was also observed. Cells of early PZ aggregated rapidly in patches and formed cartilage nodules, while the cells of late PZ distributed in regions surrounding these cell aggregates and gradually differentiated to cartilage cells. These results suggest that the cellular properties in the PZ concerning the rate of chondrogenic aggregate formation change during limb bud development, and that this change may relate to the cartilage pattern formation along the PD axis.  相似文献   

10.
Previous studies have indicated possible dual effects of the limb ectoderm in cartilage differentiation. On one hand, explants from early (stage 15) wing buds are dependent on contact with the limb ectoderm for cartilage differentiation (Gumpel-Pinot, J. Embryol. Exp. Morph. 59:157-173, 1980). On the other hand, limb ectoderm from stage 23/24 wing buds inhibits cartilage differentiation by cultured limb mesenchyme cells even without direct contact (Solursh et al., Dev. Biol. 86:471-482, 1981). In the present study, ectoderms from both stage 15/16 and stage 23/24 wings are cultured under the same conditions, and ectoderms from each source are shown to have two effects. Each stimulates chondrogenesis in stage 15 wing bud mesenchyme, and each inhibits chondrogenesis in older wing mesenchyme. The results suggest that the limb ectoderm has at least dual effects on cartilage differentiation, depending on the stage of the mesenchyme. One effect involves an early mesenchymal dependence on the ectoderm. This effect requires contact between the ectoderm and mesoderm (Gumpel-Pinot, J. Embryol. Exp. Morphol. 59:157-173, 1980) but also can be observed at a distance from the ectoderm. Later, the ectoderm can act without direct contact between the ectoderm and mesoderm to inhibit chondrogenesis over some distance.  相似文献   

11.
In the developing chick leg bud, massive programmed cell death occurs in the interdigital region. Previously, we reported the inhibition of cell death by separation of the interdigital region from neighboring digit cartilage. In this study, we examined the relationship between cell death and cartilaginous tissue in vitro. First, cell fate was observed with DiI that was used to examine cell movement in the distal tip of leg bud. Labeled cells in the prospective digital region were distributed only in the distal region as a narrow band, while cells in the prospective interdigital region expanded widely in the interdigit. In coculture of monolayer cells and a cell pellet tending to differentiate into cartilage, monolayer cells migrated into the cell pellet. These results suggested that digit cartilage tends to recruit neighboring cells into the cartilage during limb development. Next, we observed the relationship between cell death and chondrogenesis in monolayer culture. Apoptotic cell death that could be detected by TUNEL occurred in regions between cartilaginous nodules in mesenchymal cell culture. More apoptotic cell death was detected in the cell culture of leg bud mesenchyme of stage 25/26 than that of leg bud mesenchyme of stage 22 or that of stage 28. The most developed cartilaginous nodules were observed in the cell culture of stage 25/26. Finally, we observed Bmp expression in vitro and in vivo. Bmp-2, Bmp-4 and Bmp-7 were detected around the cartilage nodules. When the interdigit was separated from neighboring digit cartilage, Bmp-4 expression disappeared near the cut region but remained near the digit cartilage. This correlation between cell death and cartilaginous region suggests that cartilage tissue can induce apoptotic cell death in the developing chick limb bud due to cell migration accompanying chondrogenesis and Bmp expression.  相似文献   

12.
Demineralized adult bone contains factors which stimulate nonskeletal mesenchymal cells to undergo a developmental progression resulting in de novo endochondral ossification. In this study, isolated embryonic stage 24 chick limb bud mesenchymal cells maintained in culture were utilized as an in vitro assay system for detection of specific bioactive components solubilized from adult chicken bone matrix. Guanidinium chloride extracts (4 M) of demineralized-defatted bone were fractionated and tested in limb mesenchymal cell cultures for possible effects upon growth and chondrogenesis. Two low-molecular-weight fractions were found to be active in these cultures. A cold water-insoluble, but warm Trisbuffered saline-soluble fraction provoked a dose-dependent increase in the amount of cartilage formed after 7 days of continuous exposure as evidenced by an increased number of chondrocytes observed in living cultures, elevated cell-layer-associated 35S incorporation per microgram DNA, and greater numbers of toluidine blue-staining foci (i.e., cartilage nodules). Growth inhibitory substances were detected in a low-molecular-weight, water-soluble fraction; 7 days of continuous exposure to this material resulted in less cartilage formation and reduced cell numbers (accumulated DNA) on each plate. These observations demonstrate the usefulness of stage 24 chick limb bud cell cultures for identifying bioactive factors extracted from adult bone matrix. In addition, the action of these factors on mesenchymal cells may now be studied in a cell culture system.  相似文献   

13.
A cellular lineage analysis of the chick limb bud   总被引:2,自引:1,他引:1  
The chick limb bud has been used as a model system for studying pattern formation and tissue development for more than 50 years. However, the lineal relationships among the different cell types and the migrational boundaries of individual cells within the limb mesenchyme have not been explored. We have used a retroviral lineage analysis system to track the fate of single limb bud mesenchymal cells at different times in early limb development. We find that progenitor cells labeled at stage 19-22 can give rise to multiple cell types including clones containing cells of all five of the major lateral plate mesoderm-derived tissues (cartilage, perichondrium, tendon, muscle connective tissue, and dermis). There is a bias, however, such that clones are more likely to contain the cell types of spatially adjacent tissues such as cartilage/perichondrium and tendon/muscle connective tissue. It has been recently proposed that distinct proximodistal segments are established early in limb development; however our analysis suggests that there is not a strict barrier to cellular migration along the proximodistal axis in the early stage 19-22 limb buds. Finally, our data indicate the presence of a dorsal/ventral boundary established by stage 16 that is inhibitory to cellular mixing. This boundary is demarcated by the expression of the LIM-homeodomain factor lmx1b.  相似文献   

14.
Inhibitors of poly(ADP-ribose) synthetase, namely nicotinamide, benzamide, m-methoxybenzamide and 3-aminobenzamide, augmented chondrocytic differentiation chick embryo limb bud mesenchymal cells, in culture. These inhibitors stimulated early appearance and massive formation of cartilage nodules in micromass cultures stage 23-24 chick embryos. They also induced nodule formation in micromass and cartilage colonies at micromass plating densities from stage 18-19 embryo Benzamide, however, did not prevent differentiated chondrocytes from undergoing a pleiotypic change in cell type. These results are compatible with the putative regulatory function of poly(ADP-ribose) on cell differentiation.  相似文献   

15.
Previous investigations have indicated that the limb bud behaves as a mosaic after some experimental manipulations and regulates after others. In light of new maps of the prospective cartilage-forming regions of the chick wing, we have reinvestigated the stability of the limb pattern by two experimental procedures. First, the prospective long bone regions were excised to examine the ability of the cells outside of the prospective long bone regions to form normal long bones. Second, the mesoderm, mesoderm + dorsal and ventral ectoderm, or dorsal ectoderm (with a small amount of subjacent mesoderm) of the prospective elbow region were rotated 180° to examine the ability of the limb to control and regulate the differentiation of the cells in the limb. We can conclude from these experiments that the cartilage-forming regions of the limb mesoderm gradually become stabilized between stage 22 and stage 24, and that the stabilization is due to the advanced state of differentiation and to the decreased rate of cell division after stage 22. In addition, the dorsal and ventral ectoderm have been shown to aid in stabilization of the cartilage pattern and to influence the development of the humerus. We conclude that the dorsal and ventral ectoderm play a significant role in limb development.  相似文献   

16.
Chondrogenesis of mesenchymal cells from the frontonasal mass, mandibles and maxillae of stage-24 chick embryos has been investigated in micromass (high-density) cultures. Distinct differences in the amount and pattern of cartilage differentiation are found. In cultures of frontonasal mass cells, a central sheet of cartilage develops; in cultures of mandible cells, less cartilage differentiates and nodules form; while in cultures of maxillae cells, virtually no chondrogenesis takes place. The same patterns of cartilage are found in cultures established from stage-20 embryos. At stage 28, frontonasal mass cultures form cartilage nodules and the number of nodules in mandible cultures is markedly decreased. There are striking parallels between the chondrogenic patterns of cells from the face and limb buds in micromass culture. The frontonasal mass cell cultures of stage-20 and -24 chick embryos resemble those established from the progress zone of limb buds. The progress zone is an undifferentiated region of the limb in which positional cues operate. Cultures established from the frontonasal mass of stage-28 chick embryos and from the mandibles of all stages resemble cultures of whole limb buds. These contain a mixture of committed and uncommitted cells. Ectoderm from facial primordia locally inhibits chondrogenesis in micromass cultures and this could provide a positional cue. The differences in chondrogenic potential of cells from facial primordia may underlie the specific retinoid effects on the frontonasal mass.  相似文献   

17.
Amphibian limb regeneration is a process in which it has been suggested that cells of one differentiated type may dedifferentiate and give rise to cells of another type in the regenerate. We have used two tissue-specific hypomethylations in the newt cardioskeletal myosin heavy chain gene as lineage markers to follow the fate of cells during limb regeneration. Analysis of genomic DNA from different muscle cell populations allowed the assignment of one marker to the muscle (Hypo A) lineage and the other, more tentatively, to the 'connective tissue' (Hypo B) component of muscle. The contribution to regenerated limb cartilage and limb blastemal tissue by cells carrying these markers was estimated by quantitative analysis of Southern blot hybridizations using DNA from regenerate tissues. The results are consistent with a contribution of cells from both muscle and connective tissue lineages to cartilage in regenerated limbs. In addition, removal of the humerus at the time of amputation (eliminating any contribution from pre-existing cartilage), has provided evidence for an increased representation of cells carrying the connective tissue marker in regenerate cartilage but did not affect the representation of cells carrying the muscle cell marker.  相似文献   

18.
19.
The mechanism of interaction of hyaluronate with the surface of cells from embryonic chick limbs was studied using cell cultures of mesoderm from various developmental stages. The mode of interaction of hyaluronate with the cell surface changed at the onset of mesodermal cell condensation prior to differentiation of cartilage and muscle. At this time hyaluronate binding sites appeared on the cells and continued to be present on differentiated chondrocytes but not on myotubes. Direct measurement of hyaluronate binding was made using stage 24 mesodermal cells and membranes isolated from cells derived from various limb stages. The stage 24 cells and membranes from stage 22, 24, and 26 cells exhibited hyaluronate binding, but not membranes from stage 19 mesoderm cultures. At stage 38, membranes from chondrocyte cultures exhibited the highest hyaluronate binding, and membranes from myoblasts and fibroblasts intermediate binding, whereas membranes from myotube-enriched cultures lacked binding activity. No significant competition of hyaluronate binding by chondroitin sulfate was observed. Occupied hyaluronate binding sites were measured by the displacement of radiolabeled cell surface hyaluronate with exogenous, unlabeled hyaluronate. Very little hyaluronate was displaced from mesodermal cells derived from the youngest embryos, namely, stage 19 or stage 20-21. However, greater than 50% of cell surface hyaluronate was displaced from stage 22 and 24 mesodermal cells. The addition of exogenous hyaluronate to stage 26 mesoderm, the stage of onset of cartilage differentiation, and to stage 38 chondrocytes resulted in displacement of large proportions of both hyaluronate and chondroitin sulfate. Addition of exogenous chondroitin sulfate did not cause displacement of significant amounts of cell surface hyaluronate or chondroitin sulfate. These results indicate the presence and developmental modulation of specific binding sites for hyaluronate on limb cells during their differentiation.  相似文献   

20.
This study represents a first step in investigating the possible involvement of transforming growth factor-beta (TGF-beta) in the regulation of embryonic chick limb cartilage differentiation. TGF-beta 1 and 2 (1-10 ng/ml) elicit a striking increase in the accumulation of Alcian blue, pH 1-positive cartilage matrix, and a corresponding twofold to threefold increase in the accumulation of 35S-sulfate- or 3H-glucosamine-labeled sulfated glycosaminoglycans (GAG) by high density micromass cultures prepared from the cells of whole stage 23/24 limb buds or the homogeneous population of chondrogenic precursor cells comprising the distal subridge mesenchyme of stage 25 wing buds. Moreover, TGF-beta causes a striking (threefold to sixfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific proteoglycan. Only a brief (2 hr) exposure to TGF-beta at the initiation of culture is sufficient to stimulate chondrogenesis, indicating that the growth factor is acting at an early step in the process. Furthermore, TGF-beta promotes the formation of cartilage matrix and cartilage-specific gene expression in low density subconfluent spot cultures of limb mesenchymal cells, which are situations in which little, or no chondrogenic differentiation normally occurs. These results provide strong incentive for considering and further investigating the role of TGF-beta in the control of limb cartilage differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号