首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The foliage‐dwelling spider fauna was collected in maize fields and on stinging nettles in adjacent margins in Bavaria, South Germany. Two different sampling methods were evaluated: drop cloth sampling and suction sampling. The overall catch was dominated by juvenile spiders, web‐building spiders, and spiders of the families Theridiidae, Linyphiidae, Tetragnathidae and Araneidae (in decreasing order). Field margins harboured more species than maize fields, whereas the total spider abundance was higher in the maize crop. Web‐building spiders such as Theridiidae and Linyphiidae were prominent in maize by individual numbers. Suction sampling with a small suction device proved to be a more efficient and consistent sampling method for foliage‐dwelling spiders than drop cloth sampling. Density and species richness of foliage‐dwelling spiders in maize was shown to be fairly high, implying that spiders of higher strata may play a more important role in biological control than suspected up to now.  相似文献   

2.
Most management practices of Sitophilus zeamais Motschulsky, a field-to-post-harvest insect pest of cereals, have focused on post harvest control methods. This experiment was designed to investigate the potential of cropping system and modification of time of harvest to control S. zeamais. Intercropping and harvest time modification had significant (P < 0.05) effect on the number of S. zeamais emerging 42 days post-harvest. For the early harvest (15 weeks after planting (WAP)), the mean number of S. zeamais recorded from a maize monoculture (7.39) was significantly (P < 0.05) higher than the mean numbers of weevils emerging from a maize–soybean intercrop (2.31), but not significantly higher than the number recorded in maize–groundnut (3.87) intercrop. For the late harvest (18 WAP), the mean number of emerged adult observed in the maize–soybean intercrop (6.13) was significantly lower than the mean number of adult emerging from the monocrop maize (13.24). Maize–groundnut intercrop did not significantly reduce field infestation of S. zeamais compared with monocrop maize. Percentage weight loss observed in early harvested maize was significantly (P < 0.0001) lower than what was observed in late-harvested maize. Percentage weight loss was highest in stored maize harvested from monocrop maize plots for the early harvest, whereas intercropping maize with soybean reduced percentage weight loss when harvest was delayed.  相似文献   

3.
Field trials were designed to investigate the effect of direct nitrate fertilisation and mucuna fallow on maize yield and borer attacks in the humid forest zone of Cameroon. A traditional maizecassava- groundnut system (farmers’ practice) was compared with a maize-cassava + 120 Kg N ha-1, a rotation system in which maize-cassava followed a mucuna fallow as well as with a maize monocrop grown after mucuna fallow and with a maize monocrop grown with 120 Kg N ha-1. Average egg batch densities of Busseola fusca (Lepidoptera: Noctuidae) were lower by 35–55% in inter- than monocrops but the effect of nitrogen on B. fusca oviposition was not different from that of mucuna fallow. Highest larval infestations were found in sole maize with nitrogen and sole maize after mucuna. Yield losses were 4–10 times higher in the farmers’ practice compared to maize-cassava after mucuna and maizecassava with nitrogen. Mixed cropping systems including farmers’ practice yielded higher total gross and net benefits compared to sole maize crops. But, they were higher in maize-cassava intercrop + N than for farmer’s practice.  相似文献   

4.
Yield of tomato is limited by many diseases including Tomato spotted wilt virus disease. This study was conducted in the field at Kenya Agriculture Research Institute Njoro, Kenya, in 2004 and 2006 to determine the effect of intercropping on disease development, thrips population and yield of tomato variety Cal J grown under four intercrop systems involving kale, onion, maize and sole tomato. The experimental design was a Randomised Complete Block Design (RCBD) replicated three times. Disease scores on tomato–maize differed significantly from tomato–kale and tomato–onion in both years of the study. Maize cropping system had a low significant thrips population from the other cropping systems. Tomato–maize intercrop produced the lowest fruit weights and marketable yield in 2004 and 2006, while yield of onion, kale and maize in intercrops were not significantly different from their monocrops. Land equivalent ratio was >1 in all the cropping systems.  相似文献   

5.
C. Ludy  A. Lang   《Biological Control》2006,38(3):314-324
Concerns have been raised that genetically modified Bt maize may harm non-target organisms, and there is a general call and need for a risk assessment of Bt maize. Spiders are important pest predators in agroecosystems and in maize, and can be exposed to the Bt toxin by herbivorous or pollen-collecting prey, by active Bt maize pollen feeding, and by ingesting their pollen-dusted webs. The foliage-dwelling spider fauna of Bt maize fields and adjacent margins was monitored and compared to non-transgenic maize fields. The study took place during the vegetation seasons of 2001–2003 in Bavaria, South Germany. Maize fields and adjacent nettle field margins were colonized by a typical spider assemblage, dominated by space-web spiders (Theridiidae and Linyphiidae). Abundance and species richness of spiders was higher in nettle margins than in maize fields. The proportion of hunting spiders tended to be higher in nettle margins, whereas space-web spiders tended to be more frequent in maize fields. Bt maize showed no consistent effect on individual numbers, species richness and guild structure of spiders in maize fields and adjacent nettle field margin strips. The spider abundance was higher in Bt treatments in 2003, whereas in 2001 and 2002 no significant differences were found. The results provide an important contribution for the implementation of case-specific and general surveillance of transgenic plants to be employed due to the regulations of the European Community.  相似文献   

6.
We evaluated eight Napier grass [Pennisetum purpureum Schumach (Poaceae)] varieties, used in various parts of eastern Africa as fodder, for their potential role as trap plants in the management of the African stemborer, Busseola fusca Füller (Lepidoptera: Noctuidae) through a push–pull strategy. Oviposition preference, larval orientation, settling, arrest and dispersal, feeding, mortality and survival, and development were determined for each of these varieties under laboratory and screen house conditions. Two‐choice tests showed that only two of the varieties tested (cv. Bana and cv. Uganda Hairless) were preferentially chosen by gravid female moths for oviposition over a susceptible maize variety, cv. Western Hybrid 502. Larval preference was, however, highly variable. Larval feeding by first instars on the maize leaves was more intense and significantly more than on leaves of all the Napier grass varieties evaluated. Food consumed and amounts assimilated by the third instars over a 24‐h period were not different among larvae fed on stems of maize and those fed on stems of the various Napier grass varieties. Larval survival was significantly lower on all the Napier grass varieties (below 3%) than on maize (about 44%). Similarly, larval development was about 2–3 weeks longer on majority of the Napier grass varieties. It was concluded that cv. Bana had potential for use as a trap plant in the management of B. fusca because it was more preferred by the moths for oviposition, equally preferred as maize by the larvae for orientation, settling, and arrest, and allowed minimal survival of the larvae. It can thus be used with such ‘push’ plants as Desmodium spp. (Fabaceae) in a ‘push–pull’ strategy, but the effectiveness of such a strategy would strictly depend on proper establishment and management of these companion plants.  相似文献   

7.
Concerns have been raised that Bt maize pollen may have adverse effects on non‐target organisms; consequently, there is a general call for Bt maize risk assessment evaluating lethal and sublethal side effects. Spiders play an important economic and ecological role as pest predators in various crops, including maize. Web‐building spiders, especially, may be exposed to the Cry1Ab toxin of Bt maize by the ingestion of pollen via ‘recycling’ of pollen‐dusted webs and intentional pollen feeding. In this study, the potential Bt maize pollen exposure of orb‐web spiders was quantified in maize fields and adjacent field margins, and laboratory experiments were conducted to evaluate the possible effects of Bt maize pollen consumption on juvenile garden spiders, Araneus diadematus (Clerck) (Araneae: Araneidae). In maize fields and neighbouring field margins, web‐building spiders were exposed to high amounts of Bt maize pollen. However, a laboratory bioassay showed no effects of Bt maize pollen on weight increase, survival, moult frequency, reaction time, and various web variables of A. diadematus. A pyrethroid insecticide (Baythroid) application affected weight increase, survival, and reaction time of spiders negatively. In conclusion, the insecticide tested showed adverse effects on the garden spider, whereas the consumption of Bt maize pollen did not. This study is the first one on Bt maize effects on orb‐web spiders, and additional research is recommended in order to account for further spider species, relative fitness parameters, prey‐mediated effects, and possible long‐term chronic consequences of Bt exposure.  相似文献   

8.
《Journal of Asia》2020,23(1):167-171
In the arid and semi-arid parts of Xinjiang (China), jujube (Zizyphus jujube Mill) orchards are regularly intercropped with cotton. In 2016–2017, a field study was conducted to compare the species composition and infestation pressure of spider mites in local jujube trees under a cotton-jujube intercropping system and a jujube monocrop system. Our results showed that Tetranychus truncatus Ehara accounted for 94.2–98.5% of all spider mites in either cropping systems. Overall abundance of tree-inhabiting spider mites, including T. truncatus, in intercropped orchards was generally higher than in monocrop ones. Combining our work with earlier findings, we demonstrate how intercropping of cotton and jujube trees generally increases population levels of spider mites on either crop.  相似文献   

9.
Several plant traits control plant–insect interactions and shape host range of herbivorous insects according to their degree of dietary specialization. Understanding how plant species diversity influences herbivore infestations is of interest for the development of alternative crop protection strategies. In a pest management context, an appropriate selection of plants can modify pest distribution at the field scale. To develop a ‘push–pull’ strategy against the cabbage root fly, Delia radicum, we conducted a field study to both determine which plants exhibit contrasted pest infestation levels and to evaluate their influence on egg predation activity. Our field experiment reveals that infestation levels of brassicaceous plants by the cabbage root fly in the field can vary considerably according to plant genotype and species, while the number of predated eggs is only slightly affected by plant species. Olfactometry studies carried out under laboratory conditions revealed that plants harbouring the highest number of eggs in the field were also highly attractive, suggesting that olfactory stimuli are responsible, at least partially, for the differential infestation levels observed in the field. In a ‘push–pull’ context, this study demonstrates that different brassicaceous plants could be used to redistribute cabbage root flies in broccoli crops without compromising herbivore control by natural enemies. In addition, the importance of plant volatiles for infestation levels suggests a potential for developing a semiochemically assisted ‘push–pull’ system in which trap plants would be enhanced by synthetic release of attractive compounds.  相似文献   

10.
The “push–pull” habitat management strategy, as a new powerful and effective tool in integrated pest management (IPM), uses a combination of behavior-modifying stimuli to manipulate the distribution and abundance of pests and/or their natural enemies for pest control. In the “push–pull” strategy, pests are repelled or deterred away from the protected resource (push) by stimuli that disturb the host location and modulate the host become unattractive or unsuitable for the feeding and oviposition of pests. By using highly attractive stimuli, the target pests are simultaneously attracted (pull) to the specific source in which they are subsequently concentrated, facilitating their elimination and leaving the protected resource. Since stimuli usually are nontoxic, either “push” or “pull” components, the strategy is usually companied by population-reduced methods, such as using insecticides, exploiting nature enemies, and placing traps. Among them, methods of biological control are the most preferred. The “push–pull” strategies maximize efficacy of behavior-modifying stimuli through the additive and synergistic effects of integrating the use of methods for population reduction. In this review, the principles of the “push–pull” strategy were firstly described, then the potential behavior-modifying stimuli for “push” and “pull” components were introduced. The stimuli for use in “push–pull” strategies primarily include visual cues and chemical cues (synthetic or plant- or insect-derived semiochemicals). Visual stimuli, repellent and trap plants, host and non-host volatiles, insect pheromones, and antifeedants and oviposition deterrents are usually applied as the potential stimuli in the “push–pull” strategy for pest control. The stimuli are grouped as long-range stimuli and short-range stimuli. In addition, we also summarize models of “push–pull” habitat management strategy, such as agriculture, horticulture and forestry, of pest control and some successful case studies in applying of “push–pull” strategy and its potential ecological benefits. The “push–pull” technology (PPT), so far the most effective “push–pull” strategy in practice by farmers, developed for management of both stemborers and Striga hermonthica in maize-based farming system in eastern Africa were reviewed. The PPT uses an intercrop of repellent plants and border crops of attractive trap plants. Stemborer moths are effectively repelled away from the maize crop (push) by Desmodium and molasses grass, and are subsequently attracted (or trapped) to (pull) by the Napier grass and Sudan grass which emit the green leaf volatiles (GLVs) showing attractant properties. Finally, the problems in current research and future perspectives of the “push–pull” habitat management strategy are discussed in the present paper.  相似文献   

11.
Ground dwelling spiders are important predators in the detrital food web, which plays important roles in nutrient cycling and energy flow in forest ecosystems. The cursorial spider assemblage in a Beech-Maple forest in southwestern Michigan at sites where and invasive plant, Vinca minor, has invaded was compared to a native site within the same forest and to the forest prior to invasion by the plant. Pitfall traps were used to sample cursorial spiders over the course of a summer. Vinca minor substantially altered the forest floor spider assemblage. The invasive plant reduced the total activity-abundance of spiders by nearly 49% and depressed species diversity and evenness; in contrast, species richness was not affected. We found that V. minor changed the guild and family structure with wolf spiders being common at sites where the plant had invaded. Vinca minor reduced the abundance of vagrant web building and crab spiders. Similarity indices revealed that the spider communities between the two sites were quite dissimilar (Bray-Curtis = 0.506; Jaccard’s = 0.520). Importantly, comparison to a study conducted in the same forest 28 years earlier showed that the cursorial spider assemblage in the forest prior to Vinca invasion was very different than it was after Vinca invaded but was similar to the current native site in species and guild composition. We conclude that invasion by Vinca has caused the striking changes we observed in community organization of this important group of forest floor predators. We suggest that changes in the physical structure of the litter/soil microhabitat with the invasion of V. minor are likely the cause of the substantial impacts of the plant on the spider assemblage.  相似文献   

12.
Stem borers are the most important maize pests in the humid forest zone of Cameroon. Field trials were conducted in the long and short rainy seasons of 2002 and 2003 to assess the level of damage and yield reductions caused by stem borers in monocropped maize and in maize intercropped with non-host plants such as cassava, cowpea and soybean. The intercrops were planted in two spatial arrangements, i.e. alternating hills or alternating rows. All intercrops and the maize monocrop were grown with and without insecticide treatment for assessment of maize yield loss due to borer attacks. The land-use efficiency of each mixed cropping system was evaluated by comparing it with the monocrop. The temporal fluctuation of larval infestations followed the same pattern in all cropping systems, but at the early stage of plant growth, larval densities were 21.3-48.1% higher in the monocrops than in intercrops, and they tended to be higher in alternating rows than alternating hills arrangements. At harvest, however, pest densities did not significantly vary between treatments. Maize monocrops had 3.0-8.8 times more stems tunnelled and 1.3-3.1 times more cob damage than intercrops. Each percentage increase in stem tunnelling lowered maize grain yield by 1.10 and 1.84 g per plant, respectively, during the long and short rainy season in 2002, and by 5.39 and 1.41 g per plant, respectively, in 2003. Maize yield losses due to stem borer were 1.8-3.0 times higher in monocrops than in intercrops. Intercrops had generally a higher land-use efficiency than monocrops, as indicated by land-equivalent-ratios and area-time-equivalent-ratios of >1.0. Land-use efficiency was similar in both spatial arrangements. At current price levels, the net production of mixed cropping systems was economically superior to controlling stem borers with insecticide in monocropped maize. The maize-cassava intercrop yielded the highest land equivalent ratios and the highest replacement value of the intercrop. At medium intensity cropping this system is thus recommended for land-constrained poor farmers who do not use external inputs such as fertilizer and insecticides.  相似文献   

13.
Maternal host choices during oviposition by herbivorous insects determine the fitness of their offspring and may be influenced by environmental changes that can alter host‐plant quality. This is of particular relevance to ‘push‐pull’ cropping systems where host preferences are exploited to manage insect pest populations. We tested how drought stress in maize and companion plants that are used in these systems affect oviposition preference, larval feeding, and development of the spotted stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae). Five host species were tested (all Poaceae): maize (Zea mays L.), Napier grass (Pennisetum purpureum Schumach), signal grass [Brachiaria brizantha (A. Rich) Stapf], Brachiaria cv. ‘Mulato’, and molasses grass [Melinis minutiflora (Beauv.)]. Under drought stress, maize experienced as much oviposition as control unstressed maize in choice and no‐choice experiments. Similarly, larval leaf damage was not significantly different in drought‐stressed vs. unstressed maize. In contrast, oviposition occurred less on drought‐stressed than on unstressed Napier and signal grass. Oviposition acceptance and leaf damage remained low in both drought‐stressed and unstressed molasses grass and Mulato. Larval survival and development remained high in drought‐stressed maize, but not in Napier, signal, and molasses grass and Mulato, where survival and development were low in both drought‐stressed and unstressed plants. Our results indicate that herbivore responses to drought‐stressed plants depend on the plant species and that drought stress can change host preference and acceptance rankings. In particular, trap‐crops such as Napier grass may not divert oviposition from the main maize crop under drought stress conditions.  相似文献   

14.
It is well known that spiders are present in high numbers in orchards and may contribute to biocontrol. Some recent studies in central Europe further showed that some spiders are active year-round and consume pests even in winter. Using cardboard traps laid every two weeks, we carried out a survey to determine which spider and earwig species are active from September to May in an experimental, pesticide-free, apple orchard under a Mediterranean climate. We observed that spider activity was never completely absent. The structure of the spider communities showed a marked seasonality in three periods (so-called ‘autumn’, ‘winter’ and ‘spring’). Only two spider genera, Philodromus and Trachelas, were highly active in winter (percentage of catches during this season above 40%) and six others (Lathys, Clubiona, Gnaphosa, Theridion, Phrurolithus) had moderate activity (between 20 and 40%). The two earwig species had different patterns of winter activity with Forficula auricularia almost absent whereas F. pubescens was moderately active on trees. Spider community abundance, diversity and evenness significantly decreased between autumn and winter and remained low in the following spring probably because the attractiveness of the traps is much lower at this time of year due to mild temperatures and the presence of leaves on the trees. Winter-active spiders could contribute to pest biocontrol during the cold season and we advocate that the use of broad-spectrum pesticides at the end of winter, as classically applied in orchards, may be counter-productive for pest control.  相似文献   

15.
This paper describes the 'push-pull' or 'stimulo-deterrent diversionary' strategy in relation to current and potential examples from our own experiences. The push-pull effect is established by exploiting semiochemicals to repel insect pests from the crop ('push') and to attract them into trap crops ('pull'). The systems exemplified here have been developed for subsistence farming in Africa and delivery of the semiochemicals is entirely by companion cropping, i.e. intercropping for the push and trap cropping for the pull. The main target was a series of lepidopterous pests attacking maize and other cereals. Although the area given to the cereal crop itself is reduced under the push-pull system, higher yields are produced per unit area. An important spin-off from the project is that the companion crops are valuable forage for farm animals. Leguminous intercrops also provide advantages with regard to plant nutrition and some of the trap crops help with water retention and in reducing land erosion. A major benefit is that certain intercrop plants provide dramatic control of the African witchweed (striga). Animal husbandry forms an essential part of intensive subsistence agriculture in Africa and developments using analogous push-pull control strategies for insect pests of cattle are exemplified.  相似文献   

16.
Breeding propensity of tree-cavity nesting bird species are often limited by a shortage of natural nesting sites. Artificial nests can be used to provide alternative nest sites. Cape Parrots Poicephalus robustus are nationally endangered and nest in existing tree-cavities in high-altitude fragmented Afromontane forests in South Africa, assumed to be in short supply due to historic and current logging practices. To increase nest site availability, 179 wooden bird boxes and 28 bee boxes (to ‘pull’ bees) were erected during 2011–2012 in Hogsback, Eastern Cape. In 2016, no bird boxes were occupied by Cape Parrots. A total of 43% were used by other species, 51% were unused and 6% could not be inspected due to tree instability and inaccessibility. Two bird boxes were inspected by two pairs of Cape Parrots, but were never occupied. Occupancy of boxes by birds was not associated with nest, tree or habitat characteristics. However, occupancy of boxes by bees was associated with habitat type and tree species. Future conservation efforts will include locating natural Cape Parrot nesting sites and reforestation efforts to ensure the long-term availability of natural nesting sites.  相似文献   

17.
Studies on resource sharing and partitioning generally consider species that occur in the same habitat. However, subsidies between linked habitats, such as streams and riparian zones, create potential for competition between populations which never directly interact. Evidence suggests that the abundance of riparian consumers declines after fish invasion and a subsequent increase in resource sharing of emerging insects. However, diet overlap has not been investigated. Here, we examine the trophic niche of native fish, invasive fish, and native spiders in South Africa using stable isotope analysis. We compared spider abundance and diet at upstream fishless and downstream fish sites and quantified niche overlap with invasive and native fish. Spider abundance was consistently higher at upstream fishless sites compared with paired downstream fish sites, suggesting that the fish reduced aquatic resource availability to riparian consumers. Spiders incorporated more aquatic than terrestrial insects in their diet, with aquatic insects accounting for 45–90% of spider mass. In three of four invaded trout rivers, we found that the average proportion of aquatic resources in web‐building spider diet was higher at fishless sites compared to fish sites. The probability of web‐building and ground spiders overlapping into the trophic niche of invasive brown and rainbow trout was as high as 26 and 51%, respectively. In contrast, the probability of spiders overlapping into the trophic niche of native fish was always less than 5%. Our results suggest that spiders share resources with invasive fish. In contrast, spiders had a low probability of trophic overlap with native fish indicating that the traits of invaders may be important in determining their influence on ecosystem subsidies. We have added to the growing body of evidence that invaders can have cross‐ecosystem impacts and demonstrated that this can be due to niche overlap.  相似文献   

18.
Abstract The influence of the architecture of vegetative branches on the distribution of plant‐dwelling spiders has been intensively studied, and the effects on the aggregation of individuals in several spider species on plants include variation in prey abundance, availability of predator‐free refuges and smoother microclimate conditions. The emergence of inflorescences at the reproductive time of the plants changes branch architecture, and could provide higher prey abundance for the spiders. The distribution of spiders between inflorescences and vegetative branches was compared on four widespread plant species in a Brazilian savannah‐like system. Inflorescences attracted more spiders than vegetative branches for all plant species sampled. The influence of branch type (inflorescence and vegetative) on spider distribution was also evaluated by monitoring branches of Baccharis dracunculifolia DC. in vegetative and flowering periods for 1 year, and through a field experiment carried out during the same period where artificial inflorescences were available for spider colonization. Artificial inflorescences attached to B. dracunculifolia branches attracted more spiders than non‐manipulated vegetative branches for most of the year. However, this pattern differed among spider guilds. Foliage‐runners and stalkers occurred preferentially on artificial inflorescences relative to control branches. The frequencies of ambushers and web‐builders were not significantly different between treatment and control branches. However, most ambush spiders (65%) occurred only during the flowering period of Bdracunculifolia, suggesting that this guild was influenced only by natural inflorescences. The experimental treatment also influenced the size distribution of spiders: larger spiders were more abundant on artificial inflorescences than on vegetative branches. The hypothesis that habitat architecture can influence the spider assemblage was supported. In addition, our observational and experimental data strongly suggest that inflorescences can be a higher quality microhabitat than non‐reproductive branches for most plant‐dwelling spiders.  相似文献   

19.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest of maize in North and South America. It was first reported from Africa in 2016 and currently established as a major invasive pest of maize. A survey was conducted to explore for natural enemies of the fall armyworm in Ethiopia, Kenya and Tanzania in 2017. Smallholder maize farms were randomly selected and surveyed in the three countries. Five different species of parasitoids were recovered from fall armyworm eggs and larvae, including four within the Hymenoptera and one Dipteran. These species are new associations with FAW and were never reported before from Africa, North and South America. In Ethiopia, Cotesia icipe was the dominant larval parasitoid with parasitism ranging from 33.8% to 45.3%, while in Kenya, the tachinid fly, Palexorista zonata, was the primary parasitoid with 12.5% parasitism. Charops ater and Coccygidium luteum were the most common parasitoids in Kenya and Tanzania with parasitism ranging from 6 to 12%, and 4 to 8.3%, respectively. Although fall armyworm has rapidly spread throughout these three countries, we were encouraged to see a reasonable level of biological control in place. This study is of paramount importance in designing a biological control program for fall armyworm, either through conservation of native natural enemies or augmentative release.  相似文献   

20.
The effect of mixed intercropping of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.), compared to monocrop cultivation, on the yield and crop-N dynamics was studied in a 4-yr field experiment using 15N-isotope dilution technique. Crops were grown with or without the supply of 5 g 15N-labeled N m-2. The effect of intercropping on the dry matter and N yields, competition for inorganic N among the intercrop components, symbiotic fixation in pea and N transfer from pea to barley were determined. As an average of four years the grain yields were similar in monocropped pea, monocropped and fertilized barley and the intercrop without N fertilizer supply. Nitrogen fertilization did not influence the intercrop yield, but decreased the proportion of pea in the yield. Relative yield totals (RYT) showed that the environmental sources for plant growth were used from 12 to 31% more efficiently by the intercrop than by the monocrops, and N fertilization decreased RYT-values. Intercrop yields were less stable than monocrop barley yields, but more stable than the yield of monocropped pea. Barley competed strongly for soil and fertilizer N in the intercrop, and was up to 30 times more competitive than pea for inorganic N. Consequently, barley obtained a more than proportionate share of the inorganic N in the intercrop. At maturity the total recovery of fertilizer N was not significantly different between crops, averaging 65% of the supplied N. The fertilizer N recovered in pea constituted only 9% of total fertilizer-N recovery in the intercrop. The amount of symbiotic N2 fixation in the intercrop was less than expected from its composition and the fixation in monocrop. This indicates that the competition from barley had a negative effect on the fixation, perhaps via shading. At maturity, the average amount of N2 fixation was 17.7 g N m-2 in the monocrop and 5.1 g N m-2 in the intercropped pea. A higher proportion of total N in pea was derived from N2 fixation in the intercrop than in the monocrop, on average 82% and 62%, respectively. The 15N enrichment of intercropped barley tended to be slightly lower than of monocropped barley, although not significantly. Consequently, there was no evidence for pea N being transferred to barley. The intercropping advantage in the pea-barley intercrop is mainly due to the complimentary use of soil inorganic and atmospheric N sources by the intercrop components, resulting in reduced competition for inorganic N, rather than a facilitative effect, in which symbiotically fixed N2 is made available to barley.Abbreviations MC monocrop - IC intercrop - PMC pea monocrop - BMC barley monocrop - PIC pea in intercrop - BIC barley in intercrop  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号