共查询到20条相似文献,搜索用时 0 毫秒
1.
Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol. 相似文献
2.
Tsu-Shing Wang Ching-Fang Kuo Kun-Yan Jan Haimei Huang 《Journal of cellular physiology》1996,169(2):256-268
Arsenic, a human carcinogen, possesses a serious environmental threat but the mechanism of its toxicity remains unclear. Knowledge of how arsenic induces cell death and how cells escape the death path may help to understand arsenic carcinogenesis. We have investigated the nature of sodium arsenite-induced cell death in Chinese hamster ovary K1 cells. Following phosphate-citric acid buffer extraction, apoptotic cells with lower DNA content than the G1 cells were detected by flow cytometry. Immediately after 4 h of 40 μM arsenite treatment, no appreciable fraction of cells with sub-G1 DNA content was detected; however, the sub-G1 cell fraction increased with postarsenite incubation time, and detectable increase started at 8 h of incubation, whereas the intracellular peroxide level as measured by the fluorescent intensity of 2′,7′-dichlorofluorescein increased immediately following a 4-h arsenite treatment. Simultaneous treatment with arsenite plus antioxidant (N-acetyl-cysteine, Trolox, and Tempo); copper ion chelator (neocuproine); protein kinase inhibitor (H-7) or protein synthesis inhibitor (cycloheximide) reduced the fraction of sub-G1 cell and internucleosomal DNA degradation. Trolox, neocuproine, or cycloheximide given after arsenite treatment also effectively reduced apoptosis. These results lead to a working hypothesis that arsenite-induced apoptosis in CHO-K1 cells is triggered by the generation of hydrogen peroxide, followed by a copper-mediated Fenton reaction that catalyzes the production of hydroxyl radicals, which selectively activates protein kinase through de novo synthesis of macromolecules. © 1996 Wiley-Liss, Inc. 相似文献
3.
Inhibition of Fas-mediated apoptosis in B cell lymphomas by thiol antioxidants (glutathione and N-acetylcysteine) supported previous studies, suggesting that Fas-stimulated ROS generation may play a role in Fas-mediated apoptosis. Thus, the goal of the current study was to determine if Fas stimulation could induce ROS generation and what role, if any, it played in apoptosis. Fas crosslinking induced rapid generation of ROS (within 15 min) well before the appearance of characteristic apoptotic changes. Overexpression of catalase or superoxide dismutase suggested that Fas induced production of both superoxide anion and hydrogen peroxide. ROS generation was only observed, however, in cells that were sensitive to apoptosis and not in B cells inherently resistant to anti-Fas or in those in which resistance was induced by B cell receptor crosslinking. The exogenous addition of 250 microM hydrogen peroxide could reverse the resistant phenotype and sensitize cells to Fas-induced apoptosis. In Fas-sensitive cells, depletion of endogenous antioxidant defenses with buthionine sulfoximine increased the sensitivity to Fas-induced apoptosis, while overexpression of antioxidant enzymes and antiapoptotic proteins suggested a role for Fas-induced production of hydrogen peroxide in apoptosis. Further analysis suggested a redox-sensitive step early in Fas signaling at the level of initiator caspase (caspase-8) activation. Thus, the data suggest that the level of oxidative stress, either from exogenous sources or generated endogenously upon receptor stimulation, regulates the sensitivity to Fas-mediated apoptosis. 相似文献
4.
Liang-zhen Zhu Ya-jun Hou Ming Zhao Ming-feng Yang Xiao-ting Fu Jing-yi Sun Xiao-yan Fu Lu-rong Shao Hui-fang Zhang Cun-dong Fan Hong-li Gao Bao-liang Sun 《Cell biology and toxicology》2016,32(4):333-345
Caudatin as one species of C-21 steroidal from Cynanchum bungei decne displays potential anticancer activity. However, the underlying mechanisms remain elusive. In the present study, the growth suppressive effect and mechanism of caudatin on human glioma U251 and U87 cells were evaluated in vitro. The results indicated that caudatin significantly inhibited U251 and U87 cell growth in both a time- and dose-dependent manner. Flow cytometry analysis revealed that caudatin-induced cell growth inhibition was achieved by induction of cell apoptosis, as convinced by the increase of Sub-G1 peak, PARP cleavage and activation of caspase-3, caspase-7 and caspase-9. Caudatin treatment also resulted in mitochondrial dysfunction which correlated with an imbalance of Bcl-2 family members. Further investigation revealed that caudatin triggered U251 cell apoptosis by inducing reactive oxygen species (ROS) generation through disturbing the redox homeostasis. Moreover, pretreatment of caspase inhibitors apparently weakens caudatin-induced cell killing, PARP cleavage and caspase activation and eventually reverses caudatin-mediated apoptosis. Importantly, caudatin significantly inhibited U251 tumour xenografts in vivo through induction of cell apoptosis involving the inhibition of cell proliferation and angiogenesis, which further validate its value in combating human glioma in vivo. Taken together, the results described above all suggest that caudatin inhibited human glioma cell growth by induction of caspase-dependent apoptosis with involvement of mitochondrial dysfunction and ROS generation. 相似文献
5.
Criddle DN Gillies S Baumgartner-Wilson HK Jaffar M Chinje EC Passmore S Chvanov M Barrow S Gerasimenko OV Tepikin AV Sutton R Petersen OH 《The Journal of biological chemistry》2006,281(52):40485-40492
Oxidative stress may be an important determinant of the severity of acute pancreatitis. One-electron reduction of oxidants generates reactive oxygen species (ROS) via redox cycling, whereas two-electron detoxification, e.g. by NAD(P)H:quinone oxidoreductase, does not. The actions of menadione on ROS production and cell fate were compared with those of a non-cycling analogue (2,4-dimethoxy-2-methylnaphthalene (DMN)) using real-time confocal microscopy of isolated perfused murine pancreatic acinar cells. Menadione generated ROS with a concomitant decrease of NAD(P)H, consistent with redox cycling. The elevation of ROS was prevented by the antioxidant N-acetyl-l-cysteine but not by the NADPH oxidase inhibitor diphenyliodonium. DMN produced no change in reactive oxygen species per se but significantly potentiated menadione-induced effects, probably via enhancement of one-electron reduction, since DMN was found to inhibit NAD(P)H:quinone oxidoreductase detoxification. Menadione caused apoptosis of pancreatic acinar cells that was significantly potentiated by DMN, whereas DMN alone had no effect. Furthermore, bile acid (taurolithocholic acid 3-sulfate)-induced caspase activation was also greatly increased by DMN, whereas DMN had no effect per se. These results suggest that acute generation of ROS by menadione occurs via redox cycling, the net effect of which is induction of apoptotic pancreatic acinar cell death. Two-electron detoxifying enzymes such as NAD(P)H:quinone oxidoreductase, which are elevated in pancreatitis, may provide protection against excessive ROS and exert an important role in determining acinar cell fate. 相似文献
6.
《Free radical research》2013,47(12):1240-1247
The biological activities of C60-bis(N,N-dimethylpyrrolidinium iodide), a water-soluble cationic fullerene derivative, on human promyeloleukaemia (HL-60) cells were investigated. The pyrrolidinium fullerene derivative showed cytotoxicity in HL-60 cells. The characteristics of apoptosis, such as DNA fragmentation and condensation of chromatin in HL-60 cells, were observed by exposure to the pyrrolidinium fullerene derivative. Caspase-3 and -8 were activated and cytochrome c was also released from mitochondria. The generation of reactive oxygen species (ROS) by the pyrrolidinium fullerene derivative was observed by DCFH-DA, a fluorescence probe for the detection of ROS. Pre-treatment with α-tocopherol suppressed cell death and intracellular oxidative stress caused by the pyrrolidinium fullerene derivative. The apoptotic cell death induced by the pyrrolidinium fullerene derivative was suggested to be mediated by ROS generated by the pyrrolidinium fullerene derivative. 相似文献
7.
Wu CL Liao YF Hung YC Lu KH Hung HC Liu GY 《Journal of biochemical and molecular toxicology》2011,25(5):312-319
Dibenzoylmethane (DBM) belongs to the flavonoid family and is a minor constituent of the root extract of licorice and the β-diketone analogue of curcumin. It exhibits antimutagenic, anticancer, and chemopreventive effects. Ornithine decarboxylase (ODC), the rate-limiting enzyme of the polyamine biosynthetic pathway, plays an important role in growth, proliferation, and transformation. Our previous studies showed ODC overexpression prevented etoposide-, paclitaxel-, and cisplatin-induced apoptosis. Here, we investigated one mechanism of DBM-induced apoptosis and the antiapoptotic effects of ODC during DBM treatment. We found that DBM induced apoptosis, promoted reactive oxygen species (ROS) generation, and disrupted the mitochondrial membrane potential (Δψ(m). N-acetylcysteine, a ROS scavenger, reduced DBM-induced apoptosis, which led to the loss of Δψ(m) due to reduced ROS. Overexpression of ODC in parental cells had the same effects as the ROS scavenger. The results demonstrated that DBM-induced apoptosis was a ROS-dependent pathway and ODC overexpression blocked DBM-induced apoptosis by inhibiting intracellular ROS production. 相似文献
8.
Aims
Cellular senescence is an important tumor suppression process in vivo. Tamoxifen is a well-known anti-breast cancer drug; however, its molecular function is poorly understood. Here, we examined whether tamoxifen promotes senescence in breast cancer and colon cancer cells for the first time.Main methods
Human breast cancer MCF-7, T47D, and MDA-MB-435 and colorectal cancer HCT116 cells were treated with tamoxifen. Cellular senescence was measured by SA-β-gal staining and based on the protein expression of p53 and p21Cip1/WAF1. The production of reactive oxygen species (ROS) was determined by staining with CM-H2DCFDA and dihydroethidium (DHE). CK2 activity was assessed with a specific peptide substrate.Key findings
Tamoxifen promoted senescence phenotype and ROS generation in MCF-7 and HCT116 cells. The ROS scavenger, N-acetyl-l-cysteine (NAC), and the NADPH oxidase inhibitor, apocynin, almost completely abolished this event. Tamoxifen inhibited the catalytic activity of CK2. Overexpression of CK2α antagonized senescence mediated by tamoxifen, indicating that tamoxifen induced senescence via a CK2-dependent pathway. A well-known CK2 inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), also stimulated ROS production and senescence in MCF-7 cells. Finally, experiments using T47D (wild-type p53) and MDA-MB-435 (mutant p53) cell lines suggested that tamoxifen induces p53-independent ROS production as well as p53-dependent senescence in breast cancer cells.Significance
These results demonstrate that tamoxifen promotes senescence through a ROS–p53–p21Cip1/WAF1 dependent pathway by inhibiting CK2 activity in breast cancer and colon cancer cells. 相似文献9.
Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis 总被引:25,自引:0,他引:25
During apoptosis, the permeabilization of the mitochondrial outer membrane allows the release of cytochrome c, which induces caspase activation to orchestrate the death of the cell. Mitochondria rapidly lose their transmembrane potential (Delta Psi m) and generate reactive oxygen species (ROS), both of which are likely to contribute to the dismantling of the cell. Here we show that both the rapid loss of Delta Psi m and the generation of ROS are due to the effects of activated caspases on mitochondrial electron transport complexes I and II. Caspase-3 disrupts oxygen consumption induced by complex I and II substrates but not that induced by electron transfer to complex IV. Similarly, Delta Psi m generated in the presence of complex I or II substrates is disrupted by caspase-3, and ROS are produced. Complex III activity measured by cytochrome c reduction remains intact after caspase-3 treatment. In apoptotic cells, electron transport and oxygen consumption that depends on complex I or II was disrupted in a caspase-dependent manner. Our results indicate that after cytochrome c release the activation of caspases feeds back on the permeabilized mitochondria to damage mitochondrial function (loss of Delta Psi m) and generate ROS through effects of caspases on complex I and II in the electron transport chain. 相似文献
10.
The compound(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1 H-inden-1-one(BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells. 相似文献
11.
Previously, the antimicrobial effects and membrane-active action of psacotheasin in Candida albicans were investigated. In this study, we have further found that a series of characteristic cellular changes of apoptosis in C. albicans can be induced by the accumulation of intracellular reactive oxygen species, specifically hydroxyl radicals, the well-known important regulators of apoptosis. Cells treated with psacotheasin showed diagnostic markers in yeast apoptosis at early stages: phosphatidylserine externalization from the inner to the outer membrane surface, visualized by Annexin V-staining; mitochondrial membrane depolarization, observed by DiOC6(3) staining; and increase of metacaspase activity, measured using the CaspACE FITC-VAD-FMK. Moreover, DNA fragmentation and condensation also revealed apoptotic phenomena at late stages through the TUNEL assay staining and DAPI staining, respectively. Taken together, our findings suggest that psacotheasin possess an antifungal property in C. albicans via apoptosis as another mode of action. 相似文献
12.
Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak. 相似文献
13.
Sawyer RT Dobis DR Goldstein M Velsor L Maier LA Fontenot AP Silveira L Newman LS Day BJ 《Free radical biology & medicine》2005,38(7):928-937
Beryllium (Be), the etiologic agent of chronic beryllium disease, is a toxic metal that induces apoptosis in human alveolar macrophages. We tested the hypothesis that Be stimulates the formation of reactive oxygen species (ROS) which plays a role in Be-induced macrophage apoptosis. Mouse macrophages were exposed to 100 microM BeSO4 in the absence and presence of the catalytic antioxidant MnTBAP (100 microM). Apoptosis was measured as the percentage of TUNEL+ and caspase-8+ cells. ROS production was measured by flow cytometry using the fluorescence probes, dihydroethidine (DHE) and dichlorofluorescein diacetate (DCFH-DA). Be-exposed macrophages had increased TUNEL+ cells (15+/-1% versus controls 1+/-0.2%, P<0.05) and increased caspase-8+ cells (18.7+/-2% versus controls 1.8+/-0.4%, P<0.05). Be-induced caspase-8 activation, and a 4-fold increase in ROS formation, was ameliorated by exposure to MnTBAP. Hydrogen peroxide (30 microM) exposure potentiated Be-induced caspase-8 activation, and was also attenuated by MnTBAP. Our data are the first to demonstrate that Be stimulates macrophage ROS formation which plays an important role in Be-induced macrophage apoptosis. 相似文献
14.
Kim HJ So HS Lee JH Lee JH Park C Park SY Kim YH Youn MJ Kim SJ Chung SY Lee KM Park R 《Free radical biology & medicine》2006,40(10):1810-1819
Heme oxygenase-1 (HO-1), the rate-limiting enzyme of heme catabolism, is known to modulate various cellular functions, including cytokine production, cell proliferation, and apoptosis, in stress-related conditions. However, the role of HO-1 in the auditory system remains elusive. Herein, we demonstrate that pharmacologic induction of HO-1 along with catalytic activation significantly suppressed apoptosis of HEI-OC1 cells induced by cisplatin. Studies of ectopic expression of pcDNA3-HO-1 and siRNA of HO-1 further revealed the protective role of HO-1 against cisplatin in HEI-OC1 cells. Among the catabolic metabolites of HO-1, both carbon monoxide (CO) and bilirubin were directly involved in the protective role of HO-1 against cisplatin through inhibition of reactive oxygen species generation. Furthermore, pharmacological induction of HO-1 completely prevented the destruction of outer hair cell arrays by cisplatin through a CO-dependent mechanism in organotrophic culture of the rat primary organ of Corti explants. These results suggest that HO-1 may serve as a safeguard of auditory sensory hair cells against a variety of challenges of oxidative stress, including noise trauma, presbycusis, and ototoxic drugs, respectively. 相似文献
15.
Induction of apoptosis by chemotherapeutic drugs without generation of reactive oxygen species. 总被引:7,自引:0,他引:7
Sema Sentürker Richard Tschirret-Guth Jason Morrow Rod Levine Emily Shacter 《Archives of biochemistry and biophysics》2002,397(2):262-272
Studies in a variety of cell types have suggested that cancer chemotherapy drugs induce tumor cell apoptosis in part by inducing formation of reactive oxygen species (ROS). Using human B lymphoma cells as the targets, we have found that apoptosis can be induced in the absence of any detectable oxidative stress. Apoptosis was induced with the chemotherapy drugs VP-16 and cisplatin. To determine whether oxidants are formed as part of the drug-induced apoptotic process, intracellular markers of oxidative stress were examined. These included measurement of (1) protein carbonyl groups by Western blot immunoassay, (2) protein methionine sulfoxide residues by amino acid analysis, (3) protein sulfhydryl oxidation by Western blot immunoassay, (4) F2-isoprostanes by GC/MS, and (5) intracellular ROS production using the oxidant-sensitive dyes DCFDA and dihydrorhodamine 123. Apoptosis was quantified using fluorescence microscopy to assess nuclear morphology. The results show that VP-16 and cisplatin induce extensive apoptosis in the absence of any detectable protein or lipid oxidation, measured in both the cytosolic and mitochondrial compartments of the cell. In contrast, H2O2, which kills the cells by nonapoptotic pathways, caused increases in both protein and lipid oxidation. Three different antioxidant compounds (N-acetyl cysteine, Tempol, and MnTBAP) failed to inhibit VP-16-induced apoptosis, while inhibiting H2O2-induced cell death. Only N-acetyl cysteine inhibited cisplatin-induced cell death and this is attributed to its known ability to react directly with and inactivate cisplatin before it enters the cell. The results demonstrate that, at least in B lymphoma cells, chemotherapy-induced apoptosis occurs using a mechanism that does not involve oxidants. 相似文献
16.
McArdle F Pattwell DM Vasilaki A McArdle A Jackson MJ 《Free radical biology & medicine》2005,39(5):651-657
The aim of this work was to examine the intracellular generation of reactive oxygen species in skeletal muscle cells at rest and during and following a period of contractile activity. Intracellular generation of reactive oxygen species was examined directly in skeletal muscle myotubes using 2',7'-dichlorodihydrofluorescein (DCFH) as an intracellular probe. Preliminary experiments confirmed that DCFH located to the myotubes but was readily photoxidizable during repeated intracellular fluorescence measurements and strategies to minimize this were developed. The rate of oxidation of DCFH did not change significantly over 30 min in resting myotubes, but was increased by approximately 4-fold during 10 min of repetitive, electrically stimulated contractile activity. This increased rate was maintained over 10 min following the end of the contraction protocol. DCF fluorescence was distributed evenly throughout the myotube with no evidence of accumulation at any specific intracellular sites or localization to mitochondria. The rise in DCF fluorescence was effectively abolished by treatment of the myotubes with the intracellular superoxide scavenger, Tiron. Thus these data appear to represent the first direct demonstration of a rise in intracellular oxidant activity during contractile activity in skeletal muscle myotubes and indicate that superoxide, generated from intracellular sites, is the ultimate source of oxidant(s) responsible for the DCFH oxidation. 相似文献
17.
Vitaly A Selivanov Pedro Vizán Faustino Mollinedo Teresa WM Fan Paul WN Lee Marta Cascante 《BMC systems biology》2010,4(1):135
Background
Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. 相似文献18.
Some varieties of sweet pepper accumulate non-pungent isosters of capsaicin, a type of compounds exemplified by capsiate. The only structural difference between capsaicin and capsiate is the link between the vanillyl and the acyl moieties, via an amide bond in the former and via an ester bond in the latter. By flow cytometry analyses we have determined that nor-dihydrocapsiate, a simplified analogue of capsiate, is a pro-oxidant compound that induces apoptosis in the Jurkat tumor cell line. The nuclear DNA fragmentation induced by nor-dihydrocapsiate is preceded by an increase in the production of reactive oxygen species and by a subsequent disruption of mitochondria transmembrane potential. Capsiate-induced apoptosis is initiated at the S phase of the cell cycle and is mediated by a caspase-3-dependent pathway. The accumulation of intracellular reactive oxygen species in capsiate-treated cells is greatly prevented by the presence of ferricyanide, suggesting that capsiates target a cellular redox system distinct from the one involved in the mitochondrial electron-chain transport. Methylation of the phenolic hydroxyl of nor-dihydrocapsiate completely abrogated the ability to induce reactive oxygen species and apoptosis, highlighting the relevance of the presence of a free phenolic hydroxyl for the pro-oxidant properties of capsaicinoids. 相似文献
19.
A study has been carried out on the interaction of arachidonic acid and other long chain free fatty acids with bovine heart mitochondria. It is shown that arachidonic acid causes an uncoupling effect under state 4 respiration of intact mitochondria as well as a marked inhibition of uncoupled respiration. While, under our conditions, the uncoupling effect is independent of the fatty acid species considered, the inhibition is stronger for unsaturated acids. Experiments carried out with mitochondrial particles indicated that the arachidonic acid dependent decrease of the respiratory activity is caused by a selective inhibition of Complex I and III. It is also shown that arachidonic acid causes a remarkable increase of hydrogen peroxide production when added to mitochondria respiring with either pyruvate+malate or succinate as substrate. The production of reactive oxygen species (ROS) at the coupling site II was almost double than that at site I. The results obtained are discussed with regard to the impairment of the mitochondrial respiratory activity as occurring during the heart ischemia/reperfusion process. 相似文献
20.
Wang W Adachi M Kawamura R Sakamoto H Hayashi T Ishida T Imai K Shinomura Y 《Apoptosis : an international journal on programmed cell death》2006,11(12):2225-2235
The sesquiterpene lactone, parthenolide (PTL), possesses strong anticancer activity against various cancer cells. We report
that PTL strongly induced apoptosis in 4 multiple myeloma (MM) cell lines and primary MM cells (CD38+ high), but barely induced death in normal lymphocytes (CD38−/+low). PTL-mediated apoptosis correlated well with ROS generation and was almost completely inhibited by L-N-acetylcysteine
(L-NAC), indicating the crucial role of oxidative stress in the mechanism. Among 4 MM cell lines, there is considerable difference
in susceptibility to PTL. KMM-1 and MM1S cells sensitive to PTL possess less catalase activity than the less sensitive KMS-5
and NCI-H929 cells as well as normal lymphocytes. A catalase inhibitor 3-amino-1,2,4-triazole enhanced their PTL-mediated
ROS generation and cell death. The siRNA-mediated knockdown of catalase in KMS-5 cells decreased its activity and sensitized
them to PTL. Our findings indicate that PTL induced apoptosis in MM cells depends on increased ROS and intracellular catalase
activity is a crucial determinant of their sensitivity to PTL. 相似文献