首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photochemical efficiency of symbiotic dinoflagellates within the tissues of two reef‐building corals in response to normal and excess irradiance at water temperatures < 30 °C were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence techniques. Dark‐adapted Fv/Fm showed clear diurnal changes, decreasing to a low at solar noon and increasing in the afternoon. However, Fv/Fm also drifted downwards at night or in prolonged darkness, and increased rapidly during the early morning twilight. This parameter also increased when the oxygen concentration of the water holding the corals was increased. Such changes have not been described previously, and most probably reflect state transitions associated with PQ pool reduction via chlororespiration. These unusual characteristics may be a feature of an endosymbiotic environment, reflective of the well‐documented night‐time tissue hypoxia that occurs in corals. Fv/Fm decreased to 0·25 in response to full sunlight in shade‐acclimated (shade) colonies of Stylophora pistillata, which is considerably lower than in light‐acclimated (sun) colonies. In sun colonies, the reversible decrease in Fv/Fm was caused by a lowering of Fm and Fo suggesting photoprotection and no lasting damage. The decrease in Fv/Fm, however, was caused by a decrease in Fm and an increase in Fo in shade colonies suggesting photoinactivation and long‐term cumulative photoinhibition. Shade colonies rapidly lost their symbiotic algae (bleached) during exposure to full sunlight. This study is consistent with the hypothesis that excess light leads to chronic damage of symbiotic dinoflagellates and their eventual removal from reef‐building corals. It is significant that this can occur with high light conditions alone.  相似文献   

2.
3.
Culture experiments were conducted on ten phytoplankton species to examine their biological and physiological responses during exposure to oil and a combination of oil and dispersant. The species tested included a range of taxa typically found in the Gulf of Mexico such as cyanobacteria, chlorophytes, and diatoms. Cultures were exposed to Macondo surrogate oil using the water accommodated fraction (WAF), and dispersed oil using a chemically enhanced WAF (CEWAF) and diluted CEWAF, to replicate conditions following the Deepwater Horizon spill in the Gulf of Mexico. A range of responses were observed, that could broadly class the algae as either “robust” or “sensitive” to oil and/or dispersant exposure. Robust algae were identified as Synechococcus elongatus, Dunaliella tertiolecta, two pennate diatoms Phaeodactylum tricornutum and Navicula sp., and Skeletonema grethae CCMP775, and were largely unaffected by any of the treatments (no changes to growth rate or time spent in lag phase relative to controls). The rest of the phytoplankton, all centric diatoms, exhibited at least some combination of reduced growth rates or increased lag time in response to oil and/or dispersant exposure. Photophysiology did not have a strong treatment effect, with significant inhibition of photosynthetic efficiency (Fv/Fm) only observed in the CEWAF, if at all. We found that the effects of oil and dispersants on phytoplankton physiology were species‐dependent, and not always detrimental. This has significant implications on how oil spills might impact phytoplankton community structure and bloom dynamics in the Gulf of Mexico, which in turn impacts higher trophic levels.  相似文献   

4.
The epiphytic fern Platycerium bifurcatum grows in different habitats characterized by drought and high irradiance stress. The plant shows diurnal malate oscillations, indicative for CAM expression only in cover leaves, but not in sporotrophophyll. In P. bifurcatum cover leaves exposed to high irradiance and desiccation, the decrease in both CO2 assimilation (P N) and stomatal conductance (g s) was accompanied with occurrence of diurnal malate oscillations. Exogenously applied abscisic acid (ABA) induced the decrease in P N and g s, but no clear change in malate oscillations. The measurements of the maximum quantum efficiency of photosystem 2 (Fv/Fm) under high irradiance showed distinct photoinhibition, but no clear changes in Fv/Fm due to desiccation and ABA-treatment were found.  相似文献   

5.
Seasonal variability of maximum quantum yield of PSII photochemistry (Fv/Fm) was studied in needles of Taxus baccata seedlings acclimated to full light (HL, 100% solar irradiance), medium light (ML, 18% irradiance) or low light (LL, 5% irradiance). In HL plants, Fv/Fm was below 0.8 (i.e. state of photoinhibition) throughout the whole experimental period from November to May, with the greatest decline in January and February (when Fv/Fm value reached 0.37). In ML seedlings, significant declines of Fv/Fm occurred in January (with the lowest level at 0.666), whereas the decline in LL seedlings (down to 0.750) was not significant. Full recovery of Fv/Fm in HL seedlings was delayed until the end of May, in contrast to ML and LL seedlings. Fv/Fm was significantly correlated with daily mean (T mean), maximal (T max) and minimal (T min) temperature and T min was consistently the best predictor of Fv/Fm in HL and ML needles. Temperature averages obtained over 3 or 5 days prior to measurement were better predictors of Fv/Fm than 1- or 30-day averages. Thus our results indicate a strong light-dependent seasonal photoinhibition in needles of T. baccata as well as suggest a coupling of Fv/Fm to cumulative temperature from several preceding days. The dependence of sustained winter photoinhibition on light level to which the plants are acclimated was further demonstrated when plants from the three light environments were exposed to full daylight over single days in December, February and April and Fv/Fm was followed throughout the day to determine residual sensitivity of electron transport to ambient irradiance. In February, the treatment revealed a considerable midday increase in photoinhibition in ML plants, much less in HL (already downregulated) and none in LL plants. This suggested a greater capacity for photosynthetic utilization of electrons in LL plants and a readiness for rapid induction of photoinhibition in ML plants. Further differences between plants acclimated to contrasting light regimes were revealed during springtime de-acclimation, when short term regeneration dynamics of Fv/Fm and the relaxation of nonphotochemical quenching (NPQ) indicated a stronger persistent thermal mechanism for energy dissipation in HL plants. The ability of Taxus baccata to sustain winter photoinhibition from autumn until late spring can be beneficial for protection against an excessive light occurring together with frosts but may also restrict photosynthetic carbon gain by this shade-tolerant species when growing in well illuminated sites.  相似文献   

6.
Carbon to chlorophyll a (C:Chl) ratios, assimilation numbers (A.N.) and turnover times of natural populations of individual species and taxonomic groups were extracted from a long-term database of phytoplankton wet-weight biomass, chlorophyll a concentrations, and primary production in Lake Kinneret, Israel. From a database spanning more than a decade, we selected data for samples dominated by a single species or taxonomic group. The overall average of C:Chl was highest for cyanophytes and lowest for diatoms, while chlorophytes and dinoflagellates showed intermediate values. When converting chlorophyll a to algal cellular carbon this variability should be taken into account. The variability in C:Chl within each phylum and species (when data were available) was high and the variability at any particular sampling date tended to be greater than the temporal variability. The average chlorophyll a-normalized rate of photosynthetic activity of cyanophytes was higher and that of the dinoflagellates lower than that of other phyla. Turnover time of phytoplankton, calculated using primary productivity data at the depth of maximal photosynthetic rate, was longest in dinoflagellates and shortest in cyanophytes, with diatoms and chlorophytes showing intermediate values. The more extreme C:Chl and turnover times of dinoflagellates and cyanobacteria in comparison with chlorophytes and diatoms should be taken into consideration when employed in ecological modeling.  相似文献   

7.
We assessed the effect of the exposure to full sunlight (5, 35, and 120 min, i.e. T5, T35, and T120) on fluorescence parameters of two young tropical trees, Swietenia macrophylla, a gap-demanding species, and Minquartia guianensis, a shade tolerant species. Fluorescence parameters (F0, Fm, Fv/Fm) were recorded before treatments and after the transition to low irradiance (LI). Recovery from photoinhibition (measured as Fv/Fm) was monitored for 24 h at LI. In Swietenia, an almost complete restoration of the Fv/Fm values occurred in T5 and T35 plants, when a rise in F0 was observed after the transition to LI. This was inferred as indicative of dynamic photoinhibition. T120 led to a decline in F0 in Minquartia, but not in Swietenia. The plants of both species were unable to recovery from photoinhibition after 24 h at LI, when F0 declined or remained unchanged. This was interpreted as indicative of chronic photoinhibition. Compared with Swietenia, Minquartia was more susceptible to photoinhibition, as indicated by lower Fv/Fm values.  相似文献   

8.
This research examined the application of the maximum quantum efficiency (F v/F m) and relative electron transport rate versus irradiance curves (rETR) as a rapid, sensitive assessment of Lake Erie phytoplankton nutrient status. I evaluated the potential benefits of the variable fluorescence parameters by comparing these parameters with chemical and physiological nutrient status assays. I tested the hypothesis that F v/F m and rETR curves could diagnose nutrient status in natural lake phytoplankton and be capable of discriminating which inorganic nutrient is limited temporally and spatially. F v/F m was on average highest in the more eutrophic west basin (WB) and lowest in the more oligotrophic central basin (CB). According to the chemical and physiological indicators, P deficiency was most severe in the CB during summer stratification and N deficiency was strongest in the WB during isothermal conditions. Like F v/F m, rETR at light saturation (rETRmax) and the initial slope of the rETR versus irradiance curve (α) decreased as the severity of N and P deficiency increased. Amendment with N or P stimulated increased F v/F m, rETRmax, and α in N- and P-limited samples, respectively, and abolished the photoinhibition apparent in rETR curves of nutrient-limited samples. These results supported the view that the N and P deficiency assays, and corresponding variations of variable fluorescence parameters, were valid indicators of widely variable N and P deficiency in the phytoplankton, and could be used to provide a promising tool in determining phytoplankton nutrient status. Contrary to my hopes, it did not appear that rETR–irradiance curves could discriminate between N and P deficiency. Identification of the most limiting nutrient still demanded additional information beyond the variable fluorescence measurements.  相似文献   

9.
Photoinhibition in outdoor cultures of Spirulina platensis was studied by measuring the polyphasic rise of chlorophyll fluorescence transients, which provide information on the primary photochemistry of PSII. The maximum efficiency of PSII photochemustry (Fv/Fm) declined in response to daily increasing irradiance and recovered as daily irradiance decreased. The greatest inhibition (15%) in Fv/Fm was observed at 12:00 hr which responded to the highest irradiance. The absorption flux, the trapping flux, and the electron transport flux per PSII reaction center increased in response to daily increasing irradiance and decreased as irradiance decreased. The daily change in the concentration of PSII reaction centers followed the same pattern as Fv/Fm. However, no significant changes in the probability of electron transport beyond QAo) were observed during the day. The results suggest that the decrease in Fv/Fm induced by photoinhibition in outdoor Spirulina cultures was a result of the inactivation of PSII reaction centers. The results also suggest that the measurement of polyphasic fluorescence transients is a powerful tool to study the mechanism of photoinhibition in outdoor Spirulina cultures and to screen strains for photoinhibition tolerance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

11.
To evaluate the photoinhibition of colonial and unicellular cells of Microcystis aeruginosa under natural conditions, the maximum and effective quantum yields of photosystem II were measured from variable chlorophyll a fluorescence in samples from Lake Taihu during a summer bloom from June 19 to 21, 2006. Diurnal changes in the photoinhibition of Microcystis cells incubated immediately below the surface in clear bottles for 30 min and in situ samples under natural conditions were measured. At solar noon during the three days, the mean values of maximum quantum yield (F v/F m) and effective quantum yield (ΔF/F m′) for unicellular cells (F v/F m = 0.15, ΔF/F m′ = 0.10) were lower than those for colonial cells (F v/F m = 0.25, ΔF/F m′ = 0.15). For in situ samples, the values of F v/F m and ΔF/F m′ for colonial cells at solar noon on the three days (F v/F m 0.30, 0.25, 0.29; ΔF/F m′ 0.24, 0.21, 0.22) were also higher than those of unicellular cells (F v/F m 0.26, 0.18, 0.25; ΔF/F m′ 0.15, 0.11, 0.14). The results indicate that colony formation has a protective effect on Microcystis cells by reducing the occurrence of photoinhibition under high light intensities.  相似文献   

12.
While light limitation can inhibit bloom formation in dinoflagellates, the potential for high‐intensity photosynthetically active radiation (PAR) to inhibit blooms by causing stress or damage has not been well‐studied. We measured the effects of high‐intensity PAR on the bloom‐forming dinoflagellates Alexandrium fundyense and Heterocapsa rotundata. Various physiological parameters (photosynthetic efficiency Fv/Fm, cell permeability, dimethylsulfoniopropionate [DMSP], cell volume, and chlorophyll‐a content) were measured before and after exposure to high‐intensity natural sunlight in short‐term light stress experiments. In addition, photosynthesis‐irradiance (P‐E) responses were compared for cells grown at different light levels to assess the capacity for photophysiological acclimation in each species. Experiments revealed distinct species‐specific responses to high PAR. While high light decreased Fv/Fm in both species, A. fundyense showed little additional evidence of light stress in short‐term experiments, although increased membrane permeability and intracellular DMSP indicated a response to handling. P‐E responses further indicated a high light‐adapted species with Chl‐a inversely proportional to growth irradiance and no evidence of photoinhibition; reduced maximum per‐cell photosynthesis rates suggest a trade‐off between photoprotection and C fixation in high light‐acclimated cells. Heterocapsa rotundata cells, in contrast, swelled in response to high light and sometimes lysed in short‐term experiments, releasing DMSP. P‐E responses confirmed a low light‐adapted species with high photosynthetic efficiencies associated with trade‐offs in the form of substantial photoinhibition and a lack of plasticity in Chl‐a content. These contrasting responses illustrate that high light constrains dinoflagellate community composition through species‐specific stress effects, with consequences for bloom formation and ecological interactions within the plankton.  相似文献   

13.
The sudden increase in irradiance after canopy disturbance in primary forest together with the accompanying increase in leaf temperatures is known to cause photoinhibition in shade acclimated foliage of understorey plants. We hypothesized that there is species specific variation among understorey saplings in the magnitude of photoinhibition in response to gap creation, which is related to their requirement for overstorey disturbance. Eleven more or less circular gaps were created varying in size from 60 up to 1459 m2. Photoinhibition was assessed by determining predawn and midday Fv/Fm using chlorophyll fluorescence at two occasions during the first 3 weeks after creation of the gaps. The light environment was assessed using hemispherical photography. Five species that occurred in sufficient numbers in the understorey after gap creation were measured. They all showed an increase of photoinhibition with increasing gap size. Variation in exposure to direct sunlight within gaps contributed also to variation in photoinhibition. Dynamic photoinhibition, the overnight increase in Fv/Fm, was about 20% of total photoinhibition as measured at midday. The species responded quantitatively different. Oxandra asbeckii was most sensitive as evident from a decrease of predawn Fv/Fm from 0.79 in the understorey of undisturbed forest to 0.70 in the smallest and further to 0.41 in the largest gaps. Catostemma fragrans, the least sensitive species showed hardly any photoinhibition in the smallest gaps and less in the largest ones, whereas Lecythis concertiflora, Licania heteromorpha, and Chlorocardium rodiei had intermediate responses. Species rank order in sensitivity to photoinhibition was maintained across the whole range of gap sizes. The relationship between sensitivity to photoinhibition and species-specific gap size preference for regeneration is discussed.  相似文献   

14.
Cold-hardened rye leaves have been shown to be more resistant to low temperature photoinhibition than non-hardened rye leaves. Isolated mesophyll cells from winter rye (Secale cereale L. cv. Musketeer) were exposed to photoinhibitory light conditions to estimate the importance of leaf morphology and leaf optical properties in the resistance of cold-hardened rye leaves to photoinhibition. Cold-hardened rye cells showed more resistance to photoinhibition than non-hardened rye cells when monitored with chlorophyll a variable to maximal fluorescence ratio (Fv/Fm). Thus, leaf morphology does not contribute to the resistance of cold-hardened rye leaves to low temperature photoinhibition. However, cold-hardened and non-hardened rye cells showed a similar extent of photoinhibition when photsynthetic CO2 fixation rates were measured. They also showed the same capacity to recover from photoinhibition. During both photoinhibition and recovery, Fv/Fm and light limited CO2 fixation rates showed different kinetics. We propose that inactivation and subsequent reactivation during recovery of some light activated Calvin cycle enzymes explain the greater extent of photoinhibition of light limited CO2 fixation and its faster recovery compared to Fv/Fm kinetics during photoinhibition.  相似文献   

15.
Buoyant cyanobacteria, previously mixed throughout the water column, float to the lake surface and form a surface waterbloom when mixing subsides. At the surface, the cells are exposed to full sunlight, and this abrupt change in photon irradiance may induce photoinhibition; at the same time, temperature rises as well. This study investigated the damaging effects of this increase in temperature as well as the ecologically more relevant combination of both an increased temperature and a high photon irradiance. Analysis of surface blooms with oxygen microelectrodes showed that integrated oxygen contents that are dependent on the balance of photosynthetic oxygen evolution and respiratory oxygen uptake decreased when temperature was raised above the lake temperature. Gross rates of photosynthesis were unaffected by temperatures up to of 35°C; hence, a moderate increase in temperature mainly stimulated oxygen uptake. Preincubation of cells of the cyanobacterium Anabaena flos-aquae (Lyngb.) de Brébisson at temperatures up to 35°C did not affect the subsequent measurement of rates of net photosynthesis. Another 5°C rise in temperature severely damaged the photosynthetic apparatus. Failure to restore net rates of photosynthesis was coupled to a strong quenching of the ratio of variable to maximum fluorescence, Fv/Fm, that was the result of a rise in Fo. A combination of high temperature and high photon irradiance was more damaging than high temperature alone. In contrast, low photon irradiances offered substantial protection against heat injury of the photosynthetic apparatus. I conclude from this study that because cyanobacteria usually are acclimated to low average irradiance prior to bloom formation, there is a reasonable risk of chronic photoinhibition. The increase in temperature will enhance the photodamage of cells in the top layer of the bloom. Low photon irradiances in subsurface layers will offer protection against heat injury. If the high temperatures extend to the deepest, dark layers of the bloom, damage in those layers is likely to occur.  相似文献   

16.
Six species of phytoplankton recently isolated from upper San Francisco Bay were tested for their sensitivity to growth inhibition by ammonium (NH4+), and for differences in growth rates according to inorganic nitrogen (N) growth source. The quantum yield of photosystem II (Fv/Fm) was a sensitive indicator of NH4+ toxicity, manifested by a suppression of Fv/Fm in a dose‐dependent manner. Two chlorophytes were the least sensitive to NH4+ inhibition, at concentrations of >3,000 μmoles NH4+ · L?1, followed by two estuarine diatoms that were sensitive at concentrations >1,000 μmoles NH4+ · L?1, followed lastly by two freshwater diatoms that were sensitive at concentrations between 200 and 500 μmoles NH4+ · L?1. At non‐inhibiting concentrations of NH4+, the freshwater diatom species grew fastest, followed by the estuarine diatoms, while the chlorophytes grew slowest. Variations in growth rates with N source did not follow taxonomic divisions. Of the two chlorophytes, one grew significantly faster on nitrate (NO3?), whereas the other grew significantly faster on NH4+. All four diatoms tested grew faster on NH4+ compared with NO3?. We showed that in cases where growth rates were faster on NH4+ than they were on NO3?, the difference was not larger for chlorophytes compared with diatoms. This holds true for comparisons across a number of culture investigations suggesting that diatoms as a group will not be at a competitive disadvantage under natural conditions when NH4+ dominates the total N pool and they will also not have a growth advantage when NO3? is dominant, as long as N concentrations are sufficient.  相似文献   

17.
Photoinhibitory processes in the photosynthetic apparatus of the seedlings of Abies alba (Mill.), Picea abies (Karst.), and Pinus mugo (Turra) growing under strong shade (5 % of full solar irradiance) or full irradiance conditions were investigated in winter and spring using chlorophyll a fluorescence techniques. The extent of photoinhibition in needles as indicated by a decrease in maximum quantum yield of PS II photochemistry (Fv/Fm) depended on species, air temperature and acclimation to the light environment. Unexpectedly, shade-tolerant Abies alba was less affected by low-temperature photoinhibition compared to the other species. Fv/Fm recovered with increasing air temperature. During winter, the seedlings of Picea abies growing in shade showed higher Fv/Fm than those from full light. Non-photochemical quenching of fluorescence (NPQ) measured at the same levels of actinic light was higher in needles acclimated to full light except for Abies alba in February. Photosynthetic performance in term of ETR (apparent electron transfer rate) was also higher in full light-acclimated needles. In April, at ambient temperature, recovery of PS II efficiency from the stress induced by illumination with saturating light was faster in the needles of Picea abies than in those of Abies alba. The shade-acclimated needles of Abies alba and Picea abies showed greater down-regulation of PS II induced by high light stress.  相似文献   

18.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

19.
The perennially ice-covered lakes of Antarctica have hydrodynamically stable water columns with a number of vertically distinct phytoplankton populations. We examined the photosynthesis-irradiance characteristics of phytoplankton from four depths of Lake Bonney to determine their physiological condition relative to vertical gradients in irradiance and temperature. All populations studied showed evidence of extreme shade adaptation, including low Ik values (15–45 μE · m?2· s?1) and extremely low maximal photosynthetic rates (PBm less than 0.3 μg C ·μg chl a?1· h?1). Photosynthetic rates were controlled by temperature as well as light variations with depth. Lake Bonney has an inverted temperature profile within the trophogenic zone that increased from 0° C at the ice-water interface to 6° C from 10 to 18 m. Deeper phytoplankton (10 m and 17 m) were found to have photosynthetic capacities (PBm) and efficiences (α) three to five times higher than those at the ice-water interface. However, Q10 values were only ca. 2 for PBm (no temperature dependence was evident for α), suggesting that a simple temperature response cannot explain all the differences between populations. Lake Bonney phytoplankton (primarily cryptophytes and chlorophytes) had photosynthetic characteristics similar to diatoms from other physically stable environments (e.g. sea ice, benthos) and may be ecologically analogous to multiple deep chlorophyll maxima.  相似文献   

20.
A canopy photosynthesis model was modified to assess the effect of photoinhibition on whole‐plant carbon gain. Photoinhibitory changes in maximum quantum yield of photosystem II (Fv/Fm) could be explained solely from a parameter (Lflux) calculated from the light micro‐environment of the leaves. This relationship between Fv/Fm and the intercepted cumulative light dose, integrated and equally weighted over several hours was incorporated into the model. The effect of photoinhibition on net photosynthesis was described through relationships between photoinhibition and the shaping parameters of the photosynthetic light‐response curve (quantum use efficiency, convexity, and maximum capacity). This new aspect of the model was then validated by comparing measured field data (diurnal courses of Fv/Fm) with simulation results. Sensitivity analyses revealed that the extent of photoinhibitory reduction of whole‐plant photosynthesis was strongly dependent on the structural parameters (LAI and leaf angle). Simulations for a Mediterranean evergreen oak, Quercus coccifera, under climatic conditions which cause mild photoinhibition revealed a daily loss of 7·5–8·5% of potential carbon gain in the upper sunlit canopy layers, a 3% loss in the bottom canopy, and an overall loss of 6·1%. Thus, this canopy photoinhibition model (CANO‐PI) allows the quantitative evaluation of photoinhibition effects on primary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号