首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle.  相似文献   

2.
3.
The mitotic effects of epidermal growth factor (EGF) were investigated in two cultured fibroblast lines, BALB/c-3T3 and C3H 10T1/2 cells. EGF (30 ng/ml) added to quiescent 3T3 cells in medium containing either platelet-poor plasma or 10(-5) M insulin caused only minimal increases in the percentage of cells stimulated to initiate DNA synthesis. In contrast, EGF acted synergistically with either insulin or plasma to stimulate DNA synthesis in quiescent cultures of 10T1/2 cells, although the maximum effects of EGF were measured at concentrations several-fold greater than those found in either serum or plasma. In either 3T3 or 10T1/2 cells a transient preexposure to platelet-derived growth factor (PDGF) caused over a 10-fold increase in the sensitivity to the mitogenic effects of EGF. It is therefore possible that a primary action of PDGF is to increase the sensitivity of fibroblasts to EGF, independent of whether EGF alone is found to be mitogenic.  相似文献   

4.
Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin protect density-inhibited murine Balb/c-3T3 fibroblasts against death by distinctive mechanisms. Determination of the cell survival-enhancing activity of growth factors by cell enumeration and neutral red uptake measurement gives equivalent results. PDGF displays a steep dose-response relationship in the 1-5 ng/ml range. The other factors display shallow log-linear relationships in the following ranges: EGF: 0.2-5 ng/ml; IGF-1: 2-80 ng/ml; and insulin: 57-4,500 ng/ml. Agonists that lead to the activation of protein kinase A, including forskolin, 8-bromoadenosine 3':5'-cyclic monophosphate (Br-cAMP) and N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (db-cAMP), markedly increase both short-term (5-h) and long-term (20-h) survival of cells. 2-Isobutyl-1-methylxanthine (IBMX) markedly enhances short-term survival, but its effect decays with time. The protein kinase C agonist 12-O-tetradecanoyl phorbol-13-acetate (TPA) has a moderate protective effect at concentrations of 16-32 nM, and 64 nM TPA is highly effective. The synthetic diaclglycerols 1,2-dioctanoylglycerol (DiC8) and 1-oleoyl-2-acetylglycerol (OAG) and the calcium ionophore ionomycin show low activity. Supplementation of EGF with a protein kinase A or C agonist results in a varying additive increase in short-term (5-h) cell survival and supplementation of EGF + insulin or PDGF + EGF + insulin increases further the already high level of protection given by the growth factor combinations. Combining a protein kinase A and a protein kinase C agonist in the absence of growth factors gives an approximately additive increase in cell survival. Results obtained with kinase, RNA, and protein synthesis inhibitors suggest that: 1) activated protein kinase C catalyzes one or more phosphorylation events in quiescent Balb/c-3T3 cells that lead to gene expression with the protein product(s) mediating protection of quiescent cells against death, and 2) phosphorylation events catalyzed by protein kinase A largely serve to protect cells by a mechanism not requiring de novo RNA and protein biosynthesis.  相似文献   

5.
Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and transforming growth factor-β (TGF-β) are potent mitogens present in human platelets. Since they are likely to be released simultaneously at the site of vessel injury, their combined effects on vascular smooth muscle cells are more relevant physiologically than their individual actions. Therefore, we added various concentrations of growth factors to quiescent porcine aortic smooth muscle cells cultured in lowserum (0.5%) medium and measured the amount of [3H]thymidine incorporated into DNA. Effect of TGF-β alone was concentration-dependent: stimulatory (1.5-fold increase over the basal) at 0.025 ng/ml and inhibitory at 0.1 ng/ml. Effects of the other three growth factors on DNA synthesis were only stimulatory; their maximally effective concentrations were 20 ng/ml for PDGF (eightfold over the basal), 40 ng/ml for EGF (sixfold increase), and 20 ng/ml for IGF-I (fourfold increase). When PDGF, EGF, and IGF-I were added at submaximally effective concentrations, their effects were additive. TGF-β at 1 ng/ml inhibited at least 50% of the effects of 20 ng/ml EGF and of 10 ng/ml IGF-I, whereas inhibition of the effect of 10 ng/ml PDGF required 10 ng/ml of TGF-β. The concentration of TGF-β needed to inhibit 50% of the combined effect of EGF, IGF-1, and PDGF was 5 ng/ml. These results show complex interrelationships between the growth factors contained in the α-granules of human platelets in their effects on porcine aortic smooth muscle cells.  相似文献   

6.
Growth factors may play an important role in regulating the growth of the proximal tubule epithelium. To determine which growth factors could be involved, we have investigated the mitogenicity of various purified factors in rat kidney proximal tubule epithelial (RPTE) cells cultured in defined medium. Fibroblast growth factors, aFGF (acidic FGF) and bFGF (basic FGF), stimulate DNA synthesis in a dose-dependent manner, with ED50 values of 4.5 and 3.2 ng/ml, respectively; their effects are not additive. With cholera toxin in the medium, both aFGF and bFGF can replace insulin or epidermal growth factor (EGF) to attain the maximum level of cell growth, but they cannot replace cholera toxin. Cholera toxin specifically potentiates the effects of FGFs on DNA synthesis. At high cell density, both insulin and insulin-like growth factor 1 (IGF-1) induce DNA synthesis more effectively than EGF, FGFs and cholera toxin. The high concentration (0.2-1.0 microgram/ml) of insulin required for cell growth can be replaced by a low concentration of IGF-1 (10-20 ng/ml), indicating that insulin probably acts through a low affinity interaction with the IGF-1 receptor. Transforming growth factor-beta 1 (TGF-beta 1) inhibits DNA synthesis induced by individual factors and combinations of factors in a concentration-dependent manner. Northern blot analysis shows that mRNA for TGF-beta 1, IGF-1, and aFGF, but not bFGF are present in rat kidney. Western blot analysis and bioassay data confirmed that the majority of FGF-like protein in rat kidney is aFGF. The data suggest that in addition to EGF, IGFs, and TGF-beta, FGFs may also be important kidney-derived regulators of proximal tubule epithelial cell growth in vivo and in vitro.  相似文献   

7.
Multiple growth factors that circulate in plasma have been shown to stimulate cellular growth in vitro. The plasma growth factors appear to stimulate DNA synthesis in cultured fibroblasts only after prior exposure of cell growth factors derived from circulating cell types, such as platelets and macrophages. The purpose of these studies was to investigate the role of the plasma growth factors in stimulating smooth muscle cell replication following exposure to platelet-derived growth factor (PDGF). Following transient exposure to PDGF, insulin stimulated smooth muscle cell replication but only when supraphysiologic concentrations were used (i.e., greater than 1.0 μg/ml). Somatomedin-C (Sm-C), in contrast, was found to stimulate a 320% increase in [3H]thymidine incorporation when concentrations that are present in extracellular fluids were used (i.e., 0.5–10 ng/ml). Epidermal growth factor (EGF), an important mitogen for multiple cell types, caused a 70% increase in [3H]thymidine incorporation when added to quiescent cells following PDGF exposure, and EGF caused a substantial increase in the absolute level of [3H]thymidine incorporation when coincubated with Sm-C. When EGF (1 ng/ml) was incubated simultaneously with concentrations of Sm-C between 1 and 10 ng/ml plus Sm-C-deficient plasma, maximal [3H]thymidine incorporation was 2.1-fold greater in the presence of EGF. In contrast, insulin (20 ng/ml), when coincubated with Sm-C under similar conditions, had no enhancing effect on the cellular response to Sm-C. None of the plasma factors tested was an effective stimultant of replication when incubated either in serum-free medium or in the presence of Sm-C-deficient plasma without prior PDGF exposure. Hydrocortisone was shown to inhibit smooth muscle cell replication in concentrations between 10?7 and 10?5M. In summary, multiple plasma growth factors can stimulate the smooth muscle cell replication, and Sm-C appears to be most effective of those tested. Insulin and EGF appear to work by different mechanisms; that is, EGF can facilitate the cellular response to Sm-C, whereas insulin is effective only at supraphysiologic concentrations at which it will directly bind to Sm-C receptors.  相似文献   

8.
BP3T3, a clonal benzo(a)pyrene-transformed BALB/c-3T3 cell line, is conditionally responsive to growth factor stimulation. Density arrested cell populations deprived of growth factors by pretreatment with 0.5% platelet-poor plasma synthesized DNA both in response to ng/ml concentrations of PDGF, EGF, and somatomedin C, and in response to insulin, plasma, and serum. The above agents acted singly to induce DNA synthesis, but synergism is suggested because a higher percentage of cells were stimulated to enter the S phase when the growth factors were added in combination. Desensitization to growth factors occurred when cultures were pretreated with the high concentration of growth factors present in 10% serum (or plasma). In desensitized cultures none of the above agents, added singly or in combination, stimulated DNA synthesis. This effect appears to be global because pretreatment with one growth factor (e.g., insulin) inhibited the action of another (e.g., PDGF). Cell density appears to play a critical role in regulating DNA synthesis. Unlike nontransformed BALB/c-3T3 cells whose density is regulated by the serum concentration, the density of BP3T3 cells reached a plateau when cultures were grown in a serum (or plasma) concentration of 3% or greater. Such density arrested cultures were growth factor unresponsive; however, the cells rapidly responded to growth factors by synthesizing DNA and replicating when reseeded at a lower cell density. Thus the growth of BP3T3 cells is regulated by both growth factors and cell density.  相似文献   

9.
The role of intracellular pH (pHin) in the regulation of cell growth in both normal and transformed cells is a topic of considerable controversy. In an effort to study this relationship NIH 3T3 cells were stably transfected with the gene for the yeast H+-ATPase, constitutively elevating their pHin. The resulting cell line, RN1a, has a transformed phenotype: The cells are serum independent for growth, clone in soft agar, and form tumors in nude mice. In the present study, we further characterize this system in order to understand how transfection with this proton pump leads to serum-independent growth, using defined media to investigate the effects of specific growth factors on the transfected and parental NIH 3T3 cells. While both cell lines show similar growth increases in response to platelet-derived growth factor (PDGF)-BB and epidermal growth factor (EGF), they respond differently to insulin, insulin-like growth factor-I (IGF-I) and PDGF-AA. RN1a cells exhibit increased growth at nanomolar concentrations of insulin but the parental cells had only a relatively minor response to insulin at 10 μM. Both cell lines showed some response to IGF-I in the nanomolar range but the response of RN1a cells was much larger. Differences in insulin and IGF-I receptor number alone could not explain these results. The two cell lines also respond differently to PDGF-AA. RN1a cells are relatively insensitive to stimulation by PDGF-AA and express fewer PDGF α receptors as shown by Northern blots and receptor-binding studies. We propose a unifying hypothesis in which the H+-ATPase activates a downstream element in the PDGF-AA signal transduction pathway that complements insulin and IGF-I signals, while leading to downregulation of the PDGF α receptor. © 1994 wiley-Liss, Inc.  相似文献   

10.
Extensive evidence indicate that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) play a key role in the stimulation of the 3T3 fibroblast replication: in this connection, PDGF and EGF act as a competence and a progression factor, respectively. We have previously demonstrated that EGF alone leads density-arrested EL2 rat fibroblasts to synthesize DNA and proliferate in serum-free cultures. Here, we have analyzed the role of EGF in the control of EL2 cell proliferation. Our data show a dose-related effect of EGF on DNA synthesis and cell growth, with maximal stimulation for both parameters at 20 ng/ml. On the other hand, autocrine production of PDGF or PDGF-like substances by EL2 cells is seemingly excluded by experiments with anti-PDGF serum or medium conditioned by EL2 fibroblasts. EGF binding studies show that EL2 cells possess high affinity EGF receptors, at a density level 3 to 4-fold higher than other fibroblastic lines. In addition, EL2 cells show a normal down-regulation of EGF receptors, following exposure to EGF, but PDGF, fibroblast growth factor (FGF), transforming growth factor beta (TGF beta) and bombesin have not decreased the affinity of EGF receptor for its ligand. Moreover, in EL2 cells, the EGF is able to induce the synthesis of putative intracellular regulatory proteins that govern the PDGF-induced competence in 3T3 cells. Our data indicate that EGF in EL2 cells may act as both a competence and a progression factor, via induction of the mechanisms, regulated in other cell lines by cooperation between different growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Effects of epidermal growth factor (EGF) on the development of mouse 2-cell embryos cultured in vitro were investigated. The addition of EGF at a concentration of 0.5 ng/ml enhanced the development of 2-cell embryos during 24 h of incubation. As expected, EGF stimulated the synthesis of DNA in the 2-cell embryos about 4-fold over the control. The growth-promoting effect of EGF seemed to be specific in that other growth factors, such as transforming growth factor-alpha (TGF-alpha), transforming growth factor-beta (TGF-beta), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), nerve growth factor (NGF) and fibroblast growth factor (FGF) had no effect on the embryonal development. The addition of EGF also increased the rate of RNA synthesis in a dose-related manner between 0.1 and 50 ng/ml. However, protein synthesis was unaffected by EGF. These results raise the possibility that EGF may participate in the process of early embryogenesis in vivo.  相似文献   

12.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

13.
Exposure of BALB/c-3T3 cells (clone A31) to platelet-derived growth factor (PDGF) results in a rapid time- and dose-dependent alteration in the distribution of vinculin and actin. PDGF treatment (6-50 ng/ml) causes vinculin to disappear from adhesion plaques (within 2.5 min after PDGF exposure) and is followed by an accumulation of vinculin in punctate spots in the perinuclear region of the cell. This alteration in vinculin distribution is followed by a disruption of actin-containing stress fibers (within 5 to 10 min after PDGF exposure). Vinculin reappears in adhesion plaques by 60 min after PDGF addition while stress fiber staining is nondetectable at this time. PDGF treatment had no effect on talin, vimentin, or microtubule distribution in BALB/c-3T3 cells; in addition, exposure of cells to 5% platelet-poor plasma (PPP), 0.1% PPP, 30 ng/ml epidermal growth factor (EGF), 30 ng/ml somatomedin C, or 10 microM insulin also had no effect on vinculin or actin distribution. Other competence-inducing factors (fibroblast growth factor, calcium phosphate, and choleragen) and tumor growth factor produced similar alterations in vinculin and actin distribution as did PDGF, though not to the same extent. PDGF treatment of cells for 60 min followed by exposure to EGF (0.1-30 ng/ml for as long as 8 h after PDGF removal), or 5% PPP resulted in the nontransient disappearance of vinculin staining within 10 min after EGF or PPP additions; PDGF followed by 0.1% PPP or 10 microM insulin had no effect. Treatment of cells with low doses of PDGF (3.25 ng/ml), which did not affect vinculin or actin organization in cells, followed by EGF (10 ng/ml), resulted in the disappearance of vinculin staining in adhesion plaques, thus demonstrating the synergistic nature of PDGF and EGF. These data suggest that PDGF-induced competence and stimulation of cell growth in quiescent fibroblasts are associated with specific rapid alterations in the cellular organization of vinculin and actin.  相似文献   

14.
Addition of a mixture of EGF + insulin to quiescent cell cultures synergistically stimulates the cells to reinitiate DNA synthesis and cell division. We have previously demonstrated that this mixture rapidly increases ATP turnover in quiescent cells. The present work shows that each of the two growth factors, EGF and insulin, when added separately to quiescent cells was able to stimulate the phosphorylation of the organic acid-soluble compounds (Po) pool and ATP turnover. The stimulation of ATP turnover was closely correlated with the increase in phosphorylation of the Po pool which suggests that Po labelling reflects the ATP turnover. In many experiments, the synergy between the two growth factors on the early increase in phosphorylation of the Po pool was clearly shown. Doubling the concentration of EGF (12-24 ng/ml) or insulin (50-100 ng/ml) did not increase early stimulation of phosphorylation of the Po pool, whereas simultaneous addition of the two growth factors induced a greater stimulation than that of each growth factor separately added. The augmentation in Po labelling after addition of EGF or insulin alone was transient. The synergistic effect of the two growth factors was more significant when determined 150 or 300 min after growth-factor addition. In our experimental conditions, each of the two growth factors, EGF and insulin, was able to induce a stimulation of DNA synthesis. However, the best stimulatory effect was observed with the mixture of the two which synergistically increased DNA synthesis determined between 6 and 24 h after growth-factor addition. The comparison between DNA replication and Po labelling suggests a correlation between the increase in DNA replication and in the total ATP synthesized in the first 5 h after cell stimulation by growth factors added separately or in combination.  相似文献   

15.
The cooperative action of 17 beta-estradiol (E2) and polypeptide growth factors in stimulating proliferation of human breast cancer cells in vitro was investigated. To prevent background estrogenic stimulation, only phenol red-free media were used. When cultured in media supplemented with steroid-stripped serum in which all polypeptide growth factor activity had been chemically inactivated, MCF7 cells were unable to proliferate and became virtually quiescent. In the additional presence of insulin, epidermal growth factor (EGF), and E2, however, cells proliferated as rapidly as did cells cultured in media supplemented with fetal calf serum. Analysis by DNA flow cytometry showed that in the absence of external growth factors, MCF7 cells became arrested predominantly in the G1/G0 phase of the cell cycle. Upon addition of insulin in combination with EGF and E2, however, cells reentered the cell cycle with a high degree of synchrony. When added alone, E2 induced only slight mitogenic effects under these growth factor-defined conditions. In contrast, this steroid induced optimal proliferation in conventional steroid-stripped serum, which in itself contained considerable mitogenic activity. Insulin (at 10 micrograms/ml) was the most potent stimulator of MCF7 cell proliferation under growth factor-defined conditions, resulting in a more than sixfold increase in cell number after 96 hours. Other growth factors such as platelet-derived growth factor (PDGF), transforming growth factor beta (TGF beta), and EGF had little effect by themselves and only slightly influenced insulin-induced proliferation. At suboptimal concentrations of insulin (10-100 ng/ml), however, strong synergism was observed between E2 and insulin in inducing MCF7 proliferation. Using the CG5 cell line, a highly E2-sensitive MCF7 variant, synergism with E2 was already observed at 1 ng/ml insulin. It is concluded that MCF7 cells require insulin (or insulin-like growth factors) for proliferation. At suboptimal insulin concentrations, E2 acts synergistically with insulin, possibly by inducing autocrine production of polypeptide growth factors by these cells.  相似文献   

16.
Platelet-derived growth factor (PDGF), one of the most potent mitogens in serum for non-transformed cells, shares many biological and physical properties with fibroblast-derived growth factor (FDGF), a polypeptide produced by BHK cells transformed by SV40. Thus FDGF and PDGF have biological activity which is recoverable from sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis, at positions indicating similar molecular weights. Further, the biological activity of both factors is heat-stable but sensitive to mercaptoethanol. FDGF and PDGF have similar abilities to induce DNA synthesis synergistically in the presence of either insulin, epidermal growth factor (EGF), vasopressin or colchicine. In contrast to other growth factors, (i) either FDGF or PDGF can induce DNA synthesis in the absence of other mitogens in 3T3 cells maintained in serum-free medium and (ii) a transient exposure of cultures to FDGF or PDGF causes a persistent stimulation of DNA synthesis. Either FDGF or PDGF enhances colony formation of non-transformed cells cultured in suspension in the presence of EGF and serum. FDGF is not PDGF adsorbed by SV40-BHK cells from serum, since SV40-BHK cells plated and grown in the absence of serum still produce FDGF. In view of the similarities between PDGF and FDGF, we suggest that they may belong to the same family of growth factors.  相似文献   

17.
To investigate whether overexpression of the insulin receptor results in altered cell growth we used NIH 3T3 cells transfected with a bovine papilloma virus/insulin receptor cDNA construct (3T3/HIR). These cells expressed high numbers of insulin receptors (mean +/- sd, 631.0 +/- 16.7 ng receptors/10(6) cells). Insulin significantly stimulated the growth of 3T3/HIR cells maintained in serum-free medium. Moreover, in these cells, insulin induced marked phenotypic changes, including alterations in cell shape, loss of contact inhibition, and focal growth. In contrast to 3T3/HIR cells, insulin was without effect in either wild-type 3T3 cells (3T3/wt), 3T3 cells transfected with the neomycin resistance gene (3T3/NEO), or the bovine papilloma virus (3T3/BPV). To assess the presence of anchorage-independent growth, cells were seeded in soft agar and inspected for colony formation. 3T3/HIR cells showed absent or minimal colony growth in the absence of insulin. However, there was a dose-dependent insulin-stimulated increase in both colony size and number. Insulin-stimulated colony formation was specifically inhibited by an insulin antagonist, monoclonal antibody MA-10. In the presence of 100 nM insulin, about 3% of cells formed large colonies. Insulin neither stimulated growth nor induced colony formation in 3T3/wt cells or 3T3/NEO cells. Insulin also stimulated colony formation in CHO cells transfected with an insulin receptor cDNA construct. In conclusion, overexpression of normal insulin receptors induces a ligand-dependent transformed phenotype. This phenomenon may have clinical relevance by conferring a selective growth advantage to tumor cells with high numbers of insulin receptors.  相似文献   

18.
Summary Prolonged exposure of cells to the potent protein synthesis inhibitor cycloheximide (CHX) terminates in cell death. In the present study we investigated the effect of epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin on cell death induced by CHX in the human cancerous cell lines MDA-231 and MCF-7 (breast), KB (oral epidermoid), HEP-2 (larynx epidermoid), and SW-480 (colon), and correlated this effect to the inhibition rate of protein synthesis. Cell death was evaluated by measuring either dead cells by trypan blue dye exclusion test or by the release of lactic dehydrogenase into the culture medium. CHX was shown to induce cell death in a concentration (1 to 60 μg/ml) and time (24 to 72 h)-dependent manner in each of the five cell lines. EGF at physiologic concentrations (2 to 40 ng/ml) reduced cell death close to control level (without CHX) in the cell lines HEP-2, KB, MDA-231, and SW-480, but had almost no effect on cell death in the MCF-7 cells. IGF-1 at physiologic concentrations (2 to 40 ng/ml) reduced cell death nearly to control level in the MCF-7 cells, but had only a partial effect in the other four cell lines. Insulin at supraphysiologic concentration (10 000 ng/ml) mimicked the effect of IGF-1 in each of the cell lines. CHX at concentrations that induced about 60% cell death, inhibited about 90% of protein synthesis as measured by [3H]leucine incorporation. Protein synthesis remained inhibited although cell viability was preserved by EGF or IGF-1. These results indicated that the mechanism by which EGF or IGF-1 preserve cell viability does not require new protein synthesis and may be mediated via a posttranslational modification effect.  相似文献   

19.
Several growth factors implicated in the process of cellular transformation were tested for their ability to induce anchorage-independent (AI) growth of primary rat embryo (RE) cells. Our results show that in the presence of 10% calf serum, platelet-derived growth factor (PDGF), 1-30 ng/ml, has the strongest effect of all growth factors tested on AI growth. Type-beta transforming growth factor (TGF-beta), by itself, does not stimulate AI growth, and it inhibits the PDGF-induced colony formation in a dose-dependent manner (ED50 approximately 0.03 ng/ml). Qualitatively similar responses are obtained by using an established line of fibroblasts, NIH 3T3 cells; the principal difference between the response of the primary cells and the established cell line is in colony-forming efficiency in soft agar culture (15% and 90%, respectively, for growth of colonies greater than 1,500 micron2 diameter in the presence of 10 ng/ml PDGF). Since AI growth has been shown to correlate well with tumorigenicity in vivo, our results suggest that the transforming potential of PDGF in an appropriate responsive cell can be controlled not only through its interaction with its own receptor, but also by the presence of inhibitory factors such as TGF-beta.  相似文献   

20.
The effects of 17 beta-estradiol (E2), epidermal growth factor (EGF) and insulin, alone or in association on guinea-pig uterine epithelial cell proliferation were examined in serum-free culture conditions. Primary cultures of epithelial cells were made quiescent by serum depletion, then incubated in a chemically defined medium. In this medium, insulin increased DNA synthesis but not in a dose-dependent manner for concentrations ranging from 0.2 to 10 micrograms/ml. A significant effect of EGF was found only for the highest concentration tested (100 ng/ml). E2 alone or in the presence of insulin (1 microgram/ml) had no effect whatsoever on the concentration tested (10(-10)-10(-5)M). Insulin (10 micrograms/ml) plus EGF (100 ng/ml) exerted on DNA synthesis and cell proliferation a significant additive effect which was identical to the growth stimulation induced by 10% fetal calf serum. The effects of insulin plus EGF were not modified by the addition of E2. These findings suggest that E2 is not directly mitogenic for uterine epithelial cells in defined culture conditions and that the mitogenic response to optimal concentration of insulin plus EGF is independent of E2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号