首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A non-covalent molecularly imprinted polymer (MIP) was synthesised using naproxen (a non-steroidal, anti-inflammatory drug (NSAID)) as a template molecule. The MIP was chromatographically evaluated to confirm the imprinting effect, and was then applied as a selective sorbent in solid-phase extraction (SPE) to selectively extract naproxen. After this study, the MIP was used to extract naproxen from urine samples; it was demonstrated that by applying a selective washing step with acetonitrile (ACN) the compounds in the sample that were structurally related to naproxen could be eliminated.  相似文献   

2.
This work presents the synthesis of bacteria-mediated bioimprinted films for selective bacterial detection. Marine pathogen sulfate-reducing bacteria (SRB) were chosen as the template bacteria. Chitosan (CS) doped with reduced graphene sheets (RGSs) was electrodeposited on an indium tin oxide electrode, and the resulting RGSs-CS hybrid film served as a platform for bacterial attachment. The electrodeposition conditions were optimized to obtain RGSs-CS hybrid films with excellent electrochemical performance. A layer of nonconductive CS film was deposited to embed the pathogen, and acetone was used to wash away the bacterial templates. Electrochemical impedance spectroscopy was performed to characterize the stepwise modification process and monitor the SRB population. Faradic impedance measurements revealed that the charge transfer resistance (R(ct)) increased with increased SRB concentration. A linear relationship between ΔR(ct) and the logarithm of SRB concentration was obtained within the concentration range of 1.0×10(4)cfumL(-1) to 1.0×10(8)cfumL(-1). The impedimetric sensor showed good selectivity towards SRB based on size and shape. Hence, selectivity for bacterial detection can be improved if the bioimprinting technique is combined with other bio-recognition elements.  相似文献   

3.
Su Z  Liu Y  Xie Q  Chen L  Zhang Y  Meng Y  Li Y  Fu Y  Ma M  Yao S 《Biosensors & bioelectronics》2012,36(1):154-160
We report on the thiol-ene chemistry guided preparation of novel thiolated polymeric nanocomposite films of abundant anionic carboxylic groups for electrostatic enrichment and sensitive electroanalysis of cationic dopamine (DA) in neutral solution. Briefly, the thiol-ene nucleophilic reaction of a carboxylated thiol with oxidized polypyrrole (PPy), which was electrosynthesized on an Au electrode in the presence of solution-dispersed acidified multiwalled carbon nanotubes (MWCNTs), produced an a PPy-thiol-MWCNTs/Au electrode, and the PPy can be electrochemically overoxidized (OPPy) to form an OPPy-thiol-MWCNTs/Au electrode. The carboxylic groups of the polymeric nanocomposite film originate from the acidified MWCNTs, PPy-tethered carboxylated thiol, and OPPy. The carboxylated thiols examined are mercaptosuccinic acid (MSA) and thioglycolic acid, with β-mercaptoethanol as a control. Electrochemical quartz crystal microbalance, scanning electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were used for film characterization and process monitoring. Under the optimized condition, the differential pulse voltammetry peak current of DA oxidation at OPPy-MSA-MWCNTs/Au electrode is linear with DA concentration from 1.00×10(-9) to 2.87×10(-6) mol L(-1), with a limit of detection of 0.4 nmol L(-1), good anti-interferent ability and stability.  相似文献   

4.
The fabrication of Bacillus subtilis endospore imprinted conducting polymer films and subsequent electrochemical detection of bound spores is reported. Imprinted films were prepared by absorbing spores on the surface of glassy carbon electrodes upon which a polypyrrole, followed by a poly(3-methylthiophene), layer were electrochemically deposited. Spore template release was achieved through soaking the modified electrode in DMSO. Binding of endospores to imprinted films could be detected via impedance spectroscopy by monitoring changes in Y' (susceptance) using Mn(II)Cl2 (0.5M pH 3) as the supporting electrolyte. Here, the change in Y' could be correlated to spore densities between 10(4) and 10(7)cfu/ml. More sensitive detection of absorbed spores was achieved by following endospore germination via changes in film charge as measured using cyclic voltammetry. Here, imprinted films were submerged in spore suspensions to permit absorption, heat activated at 70 degrees C for 10 min prior to transferring to an electrochemical cell containing germination activators. By using the assay format it was possible to detect 10(2)cfu/ml. The observed changes in film charge could be attributed to the interaction of the supporting conducting polymer with dipicolinic acid (DPA) and other constituents released from the core in the course of germination. In all cases, it was not possible to regenerate the imprinted films without losing electrode response. In summary, the study has provided proof-of-concept for fabricating microbial imprinted films using conducting polymers.  相似文献   

5.
A highly selective molecularly imprinted solid-phase extraction (MISPE) coupled with high performance liquid chromatography (HPLC) ultraviolet-visible detection was developed for the simultaneous isolation and determination of four Sudan dyes (I, II, III and IV) in catsup products. The novel molecularly imprinted microspheres (MIM) were synthesized by aqueous suspension polymerization using phenylamine and naphthol as template, which showed high affinity to Sudan dyes in aqueous solution. In order to develop a selective extraction protocol for simultaneous determination the four Sudan dyes from catsup products, the molecular recognition properties of MIM as a SPE sorbent were evaluated. Under the optimized condition, good linearity was obtained from 0.01 to 2.5 μg g(-1) (r(2)≥ 0.9990) with the relative standard deviations of less than 3.4%. This proposed MISPE-HPLC procedure eliminated the effect of template leakage on quantitative analysis and could be applied to direct determination of four Sudan dyes in complicated food samples.  相似文献   

6.
The objective was to investigate the suitable polymeric films for the development of diltiazem hydrochloride (diltiazem HCl) transdermal drug delivery systems. Hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) were used as hydrophilic and hydrophobic film formers, respectively. Effects of HPMC/EC ratios and plasticizers on mechanical properties of free films were studied. Effects of HPMC/EC ratios on moisture uptake, in vitro release and permeation through pig ear skin of diltiazem HCl films were evaluated. Influence of enhancers including isopropyl myristate (IPM), isopropyl palmitate (IPP), N-methyl-2-pyrrolidone, oleic acid, polyethylene glycol 400, propylene glycol, and Tween80 on permeation was evaluated. It was found that addition of EC into HPMC film produced lower ultimate tensile strength, percent elongation at break and Young’s modulus, however, addition of EC up to 60% resulted in too hard film. Plasticization with dibutyl phthalate (DBP) produced higher strength but lower elongation as compared to triethyl citrate. The moisture uptake and initial release rates (0–1 h) of diltiazem HCl films decreased with increasing the EC ratio. Diltiazem HCl films (10:0, 8:2 and 6:4 HPMC/EC) were studied for permeation because of the higher release rate. The 10:0 and 8:2 HPMC/EC films showed the comparable permeation-time profiles, and had higher flux values and shorter lag time as compared to 6:4 HPMC/EC film. Addition of IPM, IPP or Tween80 could enhance the fluxes for approx. three times while Tween80 also shorten the lag time. In conclusion, the film composed of 8:2 HPMC/EC, 30% DBP and 10% IPM, IPP or Tween80 loaded with 25% diltiazem HCl should be selected for manufacturing transdermal patch by using a suitable adhesive layer and backing membrane. Further in vitro permeation and in vivo performance studies are required.  相似文献   

7.
A new surface imprinting technique was reported to synthesize multi-walled carbon nanotubes-molecularly imprinted polymers (MWNTs-MIPs) using erythromycin as the template, acryloyl-β-cyclodextrin (acryloyl-β-CD) and methacrylic acid (MAA) as the binary functional monomers. The MWNTs-MIPs were characterized by transmission electron microscopy (TEM), scanning electron micrograph (SEM) and Fourier transform-infrared spectroscopy (FT-IR). Adsorption experiments indicated the MWNTs-MIPs prepared with acryloyl-β-CD and MAA have high selective for erythromycin. The feasibility of the MWNTs-MIPs as solid-phase extraction (SPE) sorbent was evaluated, and the results showed that it can selectively extract erythromycin from chicken muscle samples with the recoveries ranging from 85.3% to 95.8%. The molecularly imprinted solid-phase extraction (MISPE) method could be applied for preconcentration and purification of erythromycin from chicken muscle samples.  相似文献   

8.
An imprinted electrochemical sensor based on polypyrrole-sulfonated graphene (PPy-SG)/hyaluronic acid-multiwalled carbon nanotubes (HA-MWCNTs) for sensitive detection of tryptamine was presented. Molecularly imprinted polymers (MIPs) were synthesized by electropolymerization using tryptamine as the template, and para-aminobenzoic acid (pABA) as the monomer. The surface feature of the modified electrode was characterized by cyclic voltammetry (CV). The proposed sensor was tested by chronoamperometry. Several important parameters controlling the performance of the molecularly imprinted sensor were investigated and optimized. The results showed that the PPy-SG composites films showed improved conductivity and electrochemical performances. HA-MWCNTs bionanocomposites could enhance the current response evidently. The good selectivity of the sensor allowed three discriminations of tryptamine from interferents, which include tyramine, dopamine and tryptophan. Under the optimal conditions, a linear ranging from 9.0×10(-8) mol L(-1) to 7.0×10(-5) mol L(-1) for the detection of tryptamine was observed with the detection limit of 7.4×10(-8) mol L(-1) (S/N=3). This imprinted electrochemical sensor was successfully employed to detect tryptamine in real samples.  相似文献   

9.
A novel sensitive and selective imprinted electrochemical sensor for the determination of oleanic acid was constructed on a carbon electrode by stepwise modification of functional multi-walled carbon nanotubes, cobalt hexacyanoferrate nanoparticles and a thin imprinted sol-gel film. The fabrication of a homogeneous porous poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes/SiO(2)-chitosan nanocomposite film was conducted by controllable electrodeposition technology. The surface morphologies of the modified electrodes were characterized by scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy in detail. The imprinted sensor displayed high sensitivity and selectivity towards oleanic acid. A linear relationship between the sensor response signal and the logarithm of oleanic acid concentrations ranging from 1.0×10(-8) to 1.0×10(-3) mol L(-1) was obtained with a detection limit of 2.0×10(-9) mol L(-1). It was applied to the determination of oleanic acid in real capsule samples successfully.  相似文献   

10.
An improved imprinted film-based electrochemical sensor for urea recognition was developed using CdS quantum dots (QDs) doped chitosan as the functional matrix. The microstructure and composition of the imprinted films depicted by scanning electron microscopy (SEM), attenuated total reflection infrared (ATR-IR), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS) indicated the fabricated feasibility of the nanoparticle doped films via in situ electrodeposition. Differential pulse voltammetric responses under the optimal fabrication conditions showed that the sensitivity of CdS QDs-MIP (molecularly imprinted polymer) electrochemical sensor was enhanced from the favorable electron transfer and magnified surface area of CdS QDs with a short adsorption equilibrium time (7 min), wide linear range (5.0 × 10(-12) to 4.0 × 10(-10) M and 5.0 × 10(-10) to 7.0 × 10(-8) M), and low detection limit (1.0 × 10(-12) M). Meanwhile, the fabricated sensor showed excellent specific recognition to template molecule among the structural similarities and coexistence substances. Furthermore, the proposed sensor was applied to determine the urea in human blood serum samples based on its good reproducibility and stability, and the acceptable recovery implied its feasibility for practical application.  相似文献   

11.
A sensitive and selective reversed-phase liquid chromatographic assay for itraconazole and hydroxyitraconazole in human plasma has been developed and validated. Itraconazole and hydroxyitraconazole were extracted from the matrix using solid-phase extraction on a strong cation-exchange sorbent. All compounds were detected using fluorescence at 265 and 363 nm for excitation and emission, respectively. The assay has been validated over the range 10-1,000 ng/ml for both compounds, 10 ng/ml being the lower limit of quantification. Accuracies ranged from 104 to 113% for itraconazole and from 91 to 103% for hydroxyitraconazole. The intra-assay precisions were all below 9% for itraconazole and below 8% for hydroxyitraconazole. The selectivity has been evaluated with respect to all registered anti-human immunodeficiency virus (HIV) drugs and other potential co-medications and a few of their metabolites, commonly used by HIV-infected individuals. Both itraconazole and hydroxyitraconazole were stable under relevant conditions for HIV-inactivation and storage of samples. The applicability of the assay was demonstrated for samples collected from a treated HIV-infected patient.  相似文献   

12.
Glucose oxidase was immobilized by electropolymerization into films of polyaniline, polyindole, polypyrrole, poly(o-phenylediamine), and polyaniline crosslinked with p-phenylenediamine. The kinetics and the behavior of the entrapped enzyme toward elevated temperature, organic solvent denaturation, and pH were investigated, along with the response of the films to electroactive species such as acetaminophen, ascorbate, cysteine, and uric acid. For most of the films, linearity to glucose extended from 7 to 10 mM. The poly(o-phenylenediamine)/glucose oxidase film gave the best signal/noise ratio and polypyrrole/glucose oxidase film gave the most reproducible current responses. No significant shift of the optimum reaction pH (5.5), except for polypyrrole (5.0), was observed after immobilization of glucose oxidase in the various films. Enzymatic activity decreased rapidly when pH was raised above 7.5. Thermodeactivation studies at 55 degrees , 60 degrees , and 65 degrees C have shown polypyrrole/and poly(o-phenylediamine)/glucose oxidase films to be the most resistant enzymatic films. Poly(o-phenylenediamine) films offered the best protection against glucose oxidase deactivation in hexane, chloroform, ether, THF, and acetonitrile when compared with the other electropolymerized films. All the enzymatic films exhibited permselection toward electroactive species. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
In this work, biomolecule-stabilized Au nanoclusters were demonstrated as a novel fluorescence probe for sensitive and selective detection of glucose. The fluorescence of Au nanoclusters was found to be quenched effectively by the enzymatically generated hydrogen peroxide (H(2)O(2)). By virtue of the specific response, the present assay allowed for the selective determination of glucose in the range of 1.0×10(-5) M to 0.5×10(-3) M with a detection limit of 5.0×10(-6) M. The absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and fluorescence decay studies were then performed to discuss the quenching mechanism. In addition, we demonstrated the application of the present approach in real serum samples, which suggested its great potential for diagnostic purposes.  相似文献   

14.
This article reports the characterization of the biochemical behavior of glucose oxidase entrapped in polypyrrole. The immobilization of glucose oxidase in a polypyrrole film was performed by entrapment during the electropolymerization of pyrrole at a platinum electrode poised at 0.65 V vs. SCE in aqueous solution in a one-compartment electrochemical cell. Thin films of polypyrrole (0.11 mum) were obtained and the entrapped enzyme obeyed Michaelis kinetics, indicating no diffusional constraints of the substrate. Our results indicate that the entrapped glucose oxidase is more resistant to denaturation conditions such as alkaline pH and temperature (50 and 60 degrees C) than the soluble form of the enzyme. The autoinactivation constant for the entrapped enzyme was also determined in presence of 0.25M of glucose and was 6.19 x 10(-4) min(-1), i.e., corresponding to a half-life value of 20 h. The results reported here show clearly that polypyrrole matrix has a strong stabilizing effect on the stucture and on the activity of glucose oxidase.  相似文献   

15.
In this work, a new signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A (OTA) is reported. OTA aptamer (DNA1) and OTA aptamer complementary (DNA2) were immobilized onto a magnetic bead (MB). In the presence of OTA, DNA2 was dissociated and released from the MB. The released DNA2 then hybridized with DNA3, which was linked at the 5' terminus of the amplification template and can extend along the template in the presence of Phi 29 DNA polymerase. The formed double-stranded DNA was cleaved by nicking endonuclease Nb.BbvCI and produced a short single-stranded DNA. The cleaved DNA strand generated a new site by Phi 29 DNA polymerase and the process of extension and cleavage was cyclical. Thus, a amount of the short single-stranded DNA were produced. Using DNA and ABEI labeled carboxylic silica nanoparticles chemiluminescence (CL) probe, the short single-stranded DNA could be sensitively detected. The CL intensity (ΔI) versus the concentration of OTA was linear in the range from 1.0×10(-12) to 5.0×10(-8)gmL(-1). The detection limit was 3.0×10(-13)gmL(-1), and the RSD was 3.4% at 1.0×10(-10)gmL(-1) (n=7). The developed method has been applied to detect OTA in naturally contaminated wheat samples. Due to its simplicity, sensitivity and no need of specific recognition of aptamer for cleavage, this CL bioassay offers a promising approach for the detection of OTA and other biomolecules.  相似文献   

16.
A novel chemosensitive ultrathin film with high selectivity was developed for the detection of naproxen, paracetamol, and theophylline using non-covalent electropolymerized molecular imprinted polymers (E-MIP). A series of monofunctional and bifunctional H-bonding terthiophene and carbazole monomers were compared for imprinting these drugs without the use of a separate cross-linker. A key step is the fast and efficient potentiostatic method of washing the template, which facilitated enhanced real-time sensing by surface plasmon resonance (SPR) spectroscopy. Various surface characterizations (contact angle, ellipsometry, XPS, AFM) of the E-MIP film verified the templating and release of the drug from the cross-linked conducting polymer film.  相似文献   

17.
Molecularly imprinted polyaniline (PANI) film (~ 100 nm thick) has been electrochemically fabricated onto indium-tin-oxide (ITO) coated glass plate using ascorbic acid (AA) as template molecule. Fourier transform infra-red spectroscopy, scanning electron microscopy, cyclic voltammetry and differential pulse voltammetry (DPV) studies indicate the presence of AA in PANI matrix, which also acts as a dopant for PANI. Further, the AA selective molecularly imprinted PANI electrode (AA-MI-PANI/ITO) has been developed via over-oxidation of AA doped PANI electrode which leads to the removal of AA moieties from PANI film. The response studies using DPV technique have revealed that this molecularly imprinted AA-MI-PANI/ITO electrode can detect AA in the range of 0.05-0.4 mM with detection limit of 0.018 mM and sensitivity of 1.2 × 10(-5) AmM(-1). Interestingly, this AA-MI-PANI/ITO electrode shows excellent reusability, selectivity and stability.  相似文献   

18.
Surface molecular imprinting by atom transfer radical polymerization   总被引:1,自引:0,他引:1  
Wei X  Li X  Husson SM 《Biomacromolecules》2005,6(2):1113-1121
Results are presented that demonstrate the successful preparation of ultrathin (< 10 nm), surface-confined, molecularly imprinted polymer (MIP) films on model gold substrates using atom transfer radical polymerization (ATRP). 2-Vinylpyridine (2Vpy) was investigated as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) was the cross-linking monomer. Fluorescently labeled N,N'-didansyl-L-cystine and N,N'-didansyl-L-lysine were used as the template molecules to form the MIPs. Spectroscopic and ellipsometric results are presented that follow film formation and growth rates. Results are also presented from fluorescence experiments used to quantify and compare the adsorption capacities of MIP surface films and nonimprinted (NIP) control films. MIP films exhibited higher binding capacities than the control NIP films at all solution concentrations of N,N'-didansyl-L-cystine and N,N'-didansyl-L-lysine. Furthermore, template removal from these imprinted films appears to be 100% efficient. Selectivity studies showed that the MIPs display some cross-reactivity between these two molecules; nevertheless, MIPs prepared against one template showed selectivity for that template. A selectivity coefficient of 1.13 was achieved for MIP surfaces prepared against N,N'-didansyl-L-lysine; a value of 1.51 was observed for MIP surfaces prepared against N,N'-didansyl-L-cystine.  相似文献   

19.
Epifluorescence microscopy was used to study the structure and phase behavior of phospholipid films containing a human-sequence monomeric SP-B(1-25) synthetic peptide (mSP-B(1-25)). Measurements were done directly at the air-water (A/W) interface on films in a Langmuir-Whilhelmy balance coupled to a fluorescence microscope and real-time detection system to yield an approximate optical resolution of 1 mum. Fluorescence was achieved by laser excitation of 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-PC (BODIPY-PC, concentration 相似文献   

20.
In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号