共查询到20条相似文献,搜索用时 15 毫秒
1.
Most lipases contain a lid domain to shield the hydrophobic binding site from the water environment. The lid, mostly in helical form, can undergo a conformational change to expose the active cleft during the interfacial activation. Here we report the crystal structures of Malassezia globosa LIP1 (SMG1) at 1.45 and 2.60 ? resolution in two crystal forms. The structures present SMG1 in its closed form, with a novel lid in loop conformation. SMG1 is one of the few members in the fungal lipase family that has been found to be strictly specific for mono- and diacylglycerol. To date, the mechanism for this substrate specificity remains largely unknown. To investigate the substrate binding properties, we built a model of SMG1 in open conformation. Based on this model, we found that the two bulky hydrophobic residues adjacent to the catalytic site and the N-terminal hinge region of the lid both may act as steric hindrances for triacylglycerols binding. These unique structural features of SMG1 will provide a better understanding on the substrate specificity of mono- and diacylglycerol lipases and a platform for further functional study of this enzyme. 相似文献
2.
Pityriasis versicolor is a superficial infection of the stratum corneum caused by Malassezia yeasts. The cutaneous Malassezia globosa and Malassezia restricta in Sudanese patients with pityriasis versicolor were elucidated using a molecular-based, culture-independent method and compared with that in healthy individuals. Scale samples were collected by applying an Opsite? transparent dressing to lesional and non-lesional sites on 29 Sudanese patients with pityriasis versicolor and 54 healthy individuals. Malassezia DNA was extracted directly from the samples. The overall level of colonization by Malassezia globosa and Malassezia restricta was analyzed by real-time PCR using a TaqMan probe. The overall level of colonization by Malassezia at the lesional sites was higher than that at the non-lesional sites for all body sites, including the face, neck, cheeks, and trunk (2.7- to 6.0-fold increase). Both M. globosa and M. restricta were detected in patients and healthy individuals. However, M. globosa predominated at lesional sites, whereas the level of colonization by both species was similar in healthy individuals. 相似文献
3.
Diversity in the polysaccharide component of lipopolysaccharide (LPS) contributes to the persistence and pathogenesis of Gram-negative bacteria. The Nudix hydrolase GDP-mannose mannosyl hydrolase (Gmm) contributes to this diversity by regulating the concentration of mannose in LPS biosynthetic pathways. Here, we present seven high-resolution crystal structures of Gmm from the enteropathogenic E. coli strain O128: the structure of the apo enzyme, the cocrystal structure of Gmm bound to the product Mg2+-GDP, two cocrystal structures of precatalytic and turnover complexes of Gmm-Ca2+-GDP-alpha-d-mannose, and three cocrystal structures of an inactive mutant (His-124 --> Leu) Gmm bound to substrates GDP-alpha-d-mannose, GDP-alpha-d-glucose, and GDP-beta-l-fucose. These crystal structures help explain the molecular basis for substrate specificity and promiscuity and provide a structural framework for reconciling previously determined kinetic parameters. Unexpectedly, these structures reveal concerted changes in the enzyme structure that result in the formation of a catalytically competent active site only in the presence of the substrate/product. These structural views of the enzyme may provide a rationale for the design of inhibitors that target the biosynthesis of LPS by pathogenic bacteria. 相似文献
4.
Stimulation of mono- and diacylglycerol lipase activities by bradykinin in neural cultures 总被引:1,自引:0,他引:1
A A Farooqui D K Anderson C Flynn E Bradel E D Means L A Horrocks 《Biochemical and biophysical research communications》1990,166(2):1001-1009
Neural cultures of fetal mouse spinal cord, mouse neuroblastoma (N1E-115) and mixed primary glial cell cultures from neonatal rat brain display measurable activities of mono- and diacylglycerol lipases. Treatment of fetal mouse spinal cord cultures with bradykinin (10 nM) for 1-4 min resulted in a marked increase in specific activities of mono- and diacylglycerol lipases. This is the first direct demonstration that bradykinin can act through the lipase pathway. The increase in activities of lipases was dose and time dependent. The bradykinin response was blocked by [Thi5,8, D-Phe7]bradykinin, a bradykinin B-2 receptor antagonist, indicating that the bradykinin induced stimulation of lipase activities involves bradykinin receptors. 相似文献
5.
Louis Freysz Aklaq A. Farooqui Lloyd A. Horrocks Raphaël Massarelli Henri Dreyfus 《Neurochemical research》1991,16(11):1241-1244
Chicken neurons in culture display measurable activities of mono-and diacylglycerol lipases. Treatment of chicken neuronal cultures with gangliosides (10–8M to 10–5M) resulted in a time and dose dependent increase in monoacylglycerol lipase activity. The diacylglycerol lipase showed significant increase in specific activity before that of monoacylglycerol lipase. The increase was observed only up to 24 hours and no differences between diacylglycerol lipase activity of control and ganglioside treated cells were observed after 48 hours. The data indicate that the treatment of neurons with exogenous gangliosides affect the diglyceride metabolism in stimulating not only the enzymes catalyzing their production but also those involved in their catabolism.Abbreviations CDM
chemical defined medium
- DTNB
5,5 Dithiobis-(2-nitrobenzoic acid)
- LPC
lysophosphatidylcholine
- MOPS
3-[N-Morpholino] propanesulfonic acid
To whom to address reprint requests. 相似文献
6.
Malassezia globosa is one of the most common yeasts to cause various human skin diseases including dandruff and seborrheic dermatitis. Genomic analysis of M. globosa revealed four putative cytochrome P450 (CYP) enzymes. Here, we report the purification and characterization of recombinant CYP51, a putative lanosterol 14α-demethylase, from M. globosa. The M. globosa CYP51 was expressed heterologously in Escherichia coli, followed by purification. Purified CYP51 showed a typical reduced CO-difference spectrum of P450, with a maximum absorption at 447?nm. Purified CYP51 exhibited tight binding to azole antifungal agents such as ketoconazole, econazole, fluconazole, or itraconazole, with K(d) values around 0.26-0.84?μM, which suggests that CYP51 is an orthologous target for antifungal agents in the M. globosa. In addition, three mutations (Y127F, A169S, and K176N) in the amino acid sequence of M. globosa CYP51 were identified in one of the azole-resistant strains. Homology modeling of M. globosa CYP51 suggested that the Y127F mutation may influence the resistance to azoles by blocking substrate access channels. Taken together, functional expression and characterization of the CYP51 enzyme can provide a fundamental basis for a specific antifungal drug design for dandruff caused by M. globosa. 相似文献
7.
Lee H Park HG Lim YR Lee IS Kim BJ Seong CH Chun YJ Kim D 《Journal of microbiology and biotechnology》2012,22(1):141-146
Malassezia globosa is a common pathogenic fungus that causes skin diseases including dandruff and seborrheic dermatitis in humans. Analysis of its genome identified a gene (MGL_1677) coding for a putative NADPH-P450 reductase (NPR) to support the fungal cytochrome P450 enzymes. The heterologously expressed recombinant M. globosa NPR protein was purified, and its functional features were characterized. The purified protein generated a single band on SDS-PAGE at 80.74 kDa and had an absorption maximum at 452 nm, indicating its possible function as an oxidized flavin cofactor. It evidenced NADPH-dependent reducing activity for cytochrome c or nitroblue tetrazolium. Human P450 1A2 and 2A6 were able to successfully catalyze the O-deethylation of 7- ethoxyresorufin and the 7-hydroxylation of coumarin, respectively, with the support of the purified NPR. These results demonstrate that purified NPR is an orthologous reductase protein that supports cytochrome P450 enzymes in M. globosa. 相似文献
8.
Octopine dehydrogenase [N2-(d-1-carboxyethyl)-l-arginine:NAD+ oxidoreductase] (OcDH) from the adductor muscle of the great scallop Pecten maximus catalyzes the reductive condensation of l-arginine and pyruvate to octopine during escape swimming. This enzyme, which is a prototype of opine dehydrogenases (OpDHs), oxidizes glycolytically born NADH to NAD+, thus sustaining anaerobic ATP provision during short periods of strenuous muscular activity. In contrast to some other OpDHs, OcDH uses only l-arginine as the amino acid substrate. Here, we report the crystal structures of OcDH in complex with NADH and the binary complexes NADH/l-arginine and NADH/pyruvate, providing detailed information about the principles of substrate recognition, ligand binding and the reaction mechanism. OcDH binds its substrates through a combination of electrostatic forces and size selection, which guarantees that OcDH catalysis proceeds with substrate selectivity and stereoselectivity, giving rise to a second chiral center and exploiting a “molecular ruler” mechanism. 相似文献
9.
Sardar VM Bautista DL Fischer DJ Yokoyama K Nusser N Virag T Wang DA Baker DL Tigyi G Parrill AL 《Biochimica et biophysica acta》2002,1582(1-3):309-317
Recent characterization of lysophosphatidic acid (LPA) receptors has made possible studies elucidating the structure-activity relationships (SAR) for agonist activity at individual receptors. Additionally, the availability of these receptors has allowed the identification of antagonists of LPA-induced effects. Two receptor-subtype selective LPA receptor antagonists, one selective for the LPA1/EDG2 receptor (a benzyl-4-oxybenzyl N-acyl ethanolamide phosphate, NAEPA, derivative) and the other selective for the LPA3/EDG7 receptor (diacylglycerol pyrophosphate, DGPP, 8:0), have recently been reported. The receptor SAR for both agonists and antagonists are reviewed, and the molecular basis for the difference between agonism and antagonism as well as for receptor-subtype antagonist selectivity identified by molecular modeling is described. The implications of the newly available receptor-subtype selective antagonists are also discussed. 相似文献
10.
Jinjin Huang Zhen Yang Feifei Guan Shaosen Zhang Di Cui Guohua Guan Ying Li 《Process Biochemistry》2013,48(12):1899-1904
A mono- and diacylglycerol lipase (MDL) was cloned from Penicillium cyclopium and expressed in Pichia pastoris strain GS115. The recombinant enzyme was named Lipase GH1. High cell density fermentation was performed by culture in a 7.5-L fermenter using BSMG medium, in which the phosphate in basal salt medium was replaced by sodium glycerophosphate (Na2GP). The maximal lipase activity detected was 18,000 U per mL, and total protein content in the fermentation supernatant was 3.94 g per L. The activity of the liquid enzyme remained stable under alkaline conditions at 4 °C for 6 months and was 50% after one year. Lipase GH1 was used for the synthesis of mono- and diacylglycerols (MAGs and DAGs), which are commonly used emulsifiers for industrial applications. A conversion rate of 84% after 24 h of reaction was obtained using glycerol/oleic acid molar ratio 11:1, water content 1.5 wt%, enzyme dosage 80 U per g, and reaction temperature 35 °C. Lipase GH1 was more efficient for the synthesis of MAGs and DAGs than was Lipase G50 (a similar, commercially available lipase derived from Penicillium camemberti) when oleic acid was used as an acyl donor. Lipase GH1 has potential for food emulsifier preparation. 相似文献
11.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1995,1254(3):311-318
A partially-purified diacylglycerol (DG) lipase from bovine aorta has been characterized with respect to the effects of lipid metabolites and two lipase inhibitors, phenylboronic acid and tetrahydrolipstatin (THL). DG lipase activity was determined by the hydrolysis of the sn-1 position of 1-[1-4C]palmitoyl-2-oleoyl-sn-glycerol. The products of the lipase reaction, 2-monoacylglycerol (2-monoolein) and non-esterified fatty acids (oleate, arachidonate) produced a concentration-dependent (20–200 μM) inhibition of DG lipase activity. Oleoyl-CoA and dioleoylphosphatidic acid also inhibited aortic DG lipase activity, but lysophosphatidylcholine had little or no effect. The inhibition of aortic DG lipase by phenylboronic acid was competitive, with a Ki of approx. 4 mM. THL was a very potent inhibitor of aortic DG lipase; the concentration required for inhibition to 50% of control was 2–6 nM. THL was a very potent inhibitor of concentration of substrate in the assay was increased. Attempts to identify the aortic DG lipase by covalent-labelling with [14C]THL were unsuccessful. Immunoblotting experiments revealed that hormone-sensitive triacylglycerol lipase (HSL) could not be detected in bovine aorta. 相似文献
12.
Cloning and nucleotide sequence of the mono- and diacylglycerol lipase gene (mdlB) of Aspergillus oryzae 总被引:1,自引:0,他引:1
Atsushi Tsuchiya Hidekazu Nakazawa Jinichi Toida Kunio Ohnishi Junichi Sekiguchi 《FEMS microbiology letters》1996,143(1):63-67
Abstract Aspergillus oryzae IFO4202 produces at least two extracellular lipolytic enzymes L1 and L2 (cutinase, and mono- and diacylglycerol lipase, respectively). Southern hybridization of restriction enzyme-digested genomic DNA fragments with 23mer oligonucleotides synthesized according to the amino acid sequence of the L2 as probe suggested the presence of the L2 gene (tentatively designated as mdlB ) and an additional weakly hybridizing region. A fragment containing the genomic mdlB gene was cloned in Escherichia coli . Nucleotide sequencing of the fragment revealed an open reading frame, comprising 1021 nucleotides, which contains two introns (51 and 52 nucleotides). Putative polyadenylation signals were found 182 and 287 bp downstream of the stop codon. The deduced amino acid sequence of the mdlB gene corresponds to 306 amino acid residues including a leader sequence of 28 amino acids and is highly similar to that of the mdlA gene of Penicillium camembertii . Three residues presumed to form the catalytic triad (serine, aspartic acid and histidine) of lipases were also conserved. 相似文献
13.
Yeast cells carrying intronless mono- and diacylglycerol lipase (MDGL) genes, constructed by recombination of the genomic gene and cDNA, secreted MDGL into the culture supernatant. Most of the yeast MDGL were extensively glycosylated while they had a similar glyceride specificity to that of native MDGL. Site-directed mutagenesis was used to directly confirm the involvements in enzyme activity of the presumptive amino acid residues to form the catalytic center of MDGL. These residues were conserved in the primary structure alignment of a lipase family from filamentous fungi. Mutant lipase proteins in which Ser83, Ser145, or His259 was replaced with glycine were secreted by yeast transformants as inactive proteins. Mutant proteins replacing Asp199 with glycine or asparagine were not detected in the culture supernatant. Replacing other two highly conserved aspartic acids (at positions 232 and 243) with glycine did not render the enzyme inactive. These results indicate that Ser83, Ser145, and His259 in MDGL, are essential to enzyme activity. Asp199 is also likely to be involved. 相似文献
14.
Increasing resistance of pathogenic bacteria against antibiotics is a severe problem in health care. Natural antimicrobial peptides and derivatives thereof have emerged as promising candidates for “new antibiotics”. In contrast to classical antibiotics, these peptides act by direct physical destabilization of the target cell membrane. Nevertheless, they exhibit a high specificity for bacteria over mammalian cells. However, the precise mechanism of action and the molecular basis for membrane selectivity are still a matter of debate. We have designed a new peptide antibiotic (NK-2) with enhanced antimicrobial activity based on an effector protein of mammalian immune cells (NK-lysin). Here we describe the interaction of this α-helical synthetic peptide with membrane mimetic systems, designed to mimic the lipid compositions of mammalian and bacterial cytoplasmic membranes. Utilizing fluorescence and biosensor assays, we could show that on one hand, NK-2 strongly interacts with negatively charged membranes; on the other hand, NK-2 is able to discriminate, without the necessity of negative charges, between the zwitterionic phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC), the major constituents of the outer leaflet of the cytoplasmic membranes of bacteria and mammalian cells, respectively. 相似文献
15.
Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2. 相似文献
16.
Turk BE Wong TY Schwarzenbacher R Jarrell ET Leppla SH Collier RJ Liddington RC Cantley LC 《Nature structural & molecular biology》2004,11(1):60-66
Recent events have created an urgent need for new therapeutic strategies to treat anthrax. We have applied a mixture-based peptide library approach to rapidly determine the optimal peptide substrate for the anthrax lethal factor (LF), a metalloproteinase with an important role in the pathogenesis of the disease. Using this approach we have identified peptide analogs that inhibit the enzyme in vitro and that protect cultured macrophages from LF-mediated cytolysis. The crystal structures of LF bound to an optimized peptide substrate and to peptide-based inhibitors provide a rationale for the observed selectivity and may be exploited in the design of future generations of LF inhibitors. 相似文献
17.
Regulation of various metabolic processes occurs by the phosphorylation/dephosphorylation of enzymes. Both the protein kinases that catalyze the phosphorylations and the protein phosphatases that catalyze the dephosphorylations display relatively broad specificity, reacting with a number of distinct sites in target enzymes. In this way changes in the activity of a particular kinase or phosphatase can cause coordinated and pleiotropic responses. However, the kinases and phosphatases do not exhibit a one-to-one correspondence in their reactions. Residues at different positions may be phosphorylated by a single kinase, yet dephosphorylated by different individual phosphatases. Conversely, sites which are substrates for different individual kinases may be dephosphorylated by a single phosphatase. In exploring the molecular basis for these differences this article shows that whereas kinases react with specific primary structures that often times appear as beta bends, the phosphatases recognize higher order structure, less strictly ruled by amino acid sequence surrounding the phosphorylated site. The differences, seen in the ability of these enzymes to utilize synthetic peptide substrates, might be rationalized in terms of function. Kinases need protruding segments of structure that can be enwrapped to exclude water, thereby minimizing ATP hydrolysis and enhancing phosphotransferase activity. On the other hand phosphatases are hydrolytic enzymes that may operate especially well on protein interfaces. Hydrolytic action often measured with p-nitrophenylphosphate is not necessarily indicative of a protein phosphatase and consideration of the mechanism reveals why this substrate can be misleading.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase 下载免费PDF全文
We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities. 相似文献
19.
20.
Diacylglycerol lipase (DGL) was solubilized from human platelet microsomes with heptyl-beta-D-thioglucoside, and purified to homogeneity on SDS-PAGE using a combination of chromatographic and electrophoretic methods. The molecular mass of the purified DGL was estimated to be 33 kDa. Its apparent pI was pH 6.0, as determined by Immobiline isoelectro-focusing. The enzymatic activity of the partially purified DGL was investigated in the presence of a variety of inhibitors and reagents, as well as its pH and calcium dependence. Thiol reagents such as p-chloromercurubenzoic acid (pCMB), N-ethylmaleimide (NEM), and HgCl2 inhibited the activity, while dithiothreitol (DTT) and reduced glutathione (GSH) enhanced it. In addition, the enzymatic activity was inhibited by two serine blockers, phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphate (DFP), and by a histidine modifying reagent, p-bromophenacyl bromide (pBPB). These results suggest that cysteine, serine and histidine residues are required for the enzymatic activity of DGL. DGL was optimally active in the pH range of 7-8 and its activity did not change significantly in the presence of various calcium concentrations, even in the presence of 2 mM EGTA. This indicates that DGL can hydrolyze substrates with a basal cytosolic free Ca2+ level in the physiological pH range. A DGL inhibitor, RHC-80267, inhibited DGL activity in a dose-dependent manner with an IC50 (the concentration required for 50% inhibition) of about 5 microM. Unexpectedly, several phospholipase A2 (PLA2) inhibitors were potent inhibitors of DGL activity (IC50<5 microM), suggesting that the catalytic mechanisms of DGL and PLA2 may be similar. Finally, we show that DGL activity was inhibited by 2-monoacylglycerols (2-MGs), the reaction products of this enzyme. Among the three 2-MGs tested (2-arachidonoyl glycerol, 2-stearoyl glycerol, and 2-oleoyl glycerol), 2-arachidonoyl glycerol was the most potent inhibitor. 相似文献