首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the conversion of biologically inactive 11-ketosteroids into their active 11beta-hydroxy derivatives and vice versa. 11beta-HSD1 has been studied as a potential treatment for metabolic disease such as diabetes and obesity. To find correlation between 11beta-HSD1 and inhibitors, three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed on 70 inhibitors, based on molecular docking conformations obtained by using FlexX-Pharm. The studies include comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Based on the docking results, highly predictive 3D-QSAR models were developed with q(2) values of 0.543 and 0.519 for CoMFA and CoMSIA, respectively. A comparison of the 3D-QSAR field contributions with the structural features of the binding site showed good correlation between the two analyses. Therefore, these results should be useful to the prediction of the activities of new 11beta-HSD1 inhibitors.  相似文献   

2.
Adamantyl triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). They are active both in in vitro and in in vivo pharmacodynamic models. The synthesis and structure-activity relationships of these inhibitors are presented.  相似文献   

3.
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is a potential target for treatment of diabetes and metabolic syndrome. Docking and pharmacophore modeling have been used to discover novel inhibitors of 11beta-HSD1. Several compounds, with large structural diversity and good potency against 11beta-HSD1, have been found and their potency was determined by the enzyme assay. New scaffolds of 11beta-HSD1 inhibitors are also reported.  相似文献   

4.
Derivatives of a CYP1A2 inhibitor rutaecarpine were synthesized to have potent and selective inhibition of human CYP1 members. Structural modelling shows a good fitting of rutaecarpine with the putative active site of human CYP1A2. Among the derivatives, 10- and 11-methoxyrutaecarpine are the most selective CYP1B1 inhibitors. 1-Methoxyrutaecarpine and 1,2-dimethoxyrutaecarpine are the most selective CYP1A2 inhibitors.  相似文献   

5.
A series of potent and selective adamantane aminoamide 11-beta-HSD-1 inhibitors has been optimized. Chemically these studies were expedited by utilizing readily obtained amino acids as starting materials or an isocyanide multicomponent reaction. Structure-activity relationship studies resulted in the discovery of dual human and mouse 11-beta-HSD-1 potent and selective inhibitors like adamantane 11 and related compounds with high metabolic stability and robust pharmacokinetic profiles.  相似文献   

6.
Dendritic cells (DC) of the CD11c(+) myeloid phenotype have been implicated in the spread of scrapie in the host. Previously, we have shown that CD11c(+) DC can cause a rapid degradation of proteinase K-resistant prion proteins (PrP(Sc)) in vitro, indicating a possible role of these cells in the clearance of PrP(Sc). To determine the mechanisms of PrP(Sc) degradation, CD11c(+) DC that had been exposed to PrP(Sc) derived from a neuronal cell line (GT1-1) infected with scrapie (ScGT1-1) were treated with a battery of protease inhibitors. Following treatment with the cysteine protease inhibitors (2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane (E-64c), its ethyl ester (E-64d), and leupeptin, the degradation of PrP(Sc) was inhibited, while inhibitors of serine and aspartic and metalloproteases (aprotinin, pepstatin, and phosphoramidon) had no effect. An endogenous degradation of PrP(Sc) in ScGT1-1 cells was revealed by inhibiting the expression of cellular PrP (PrP(C)) by RNA interference, and this degradation could also be inhibited by the cysteine protease inhibitors. Our data show that PrP(Sc) is proteolytically cleaved preferentially by cysteine proteases in both CD11c(+) DC and ScGT1-1 cells and that the degradation of PrP(Sc) by proteases is different from that of PrP(C). Interference by protease inhibitors with DC-induced processing of PrP(Sc) has the potential to modify prion spread, clearance, and immunization in a host.  相似文献   

7.
11beta-hydroxysteroid dehydrogenase 1 regulates the tissue availability of cortisol by interconverting cortisone and cortisol. It is capable of functioning as both a reductase and a dehydrogenase depending upon the surrounding milieu. In this work, we have studied the reaction mechanism of a soluble form of human 11beta-hydroxysteroid dehydrogenase 1 and its mode of inhibition by potent and selective inhibitors belonging to three different structural classes. We found that catalysis follows an ordered addition with NADP(H) binding preceding the binding of the steroid. While all three inhibitors tested bound to the steroid binding pocket, they differed in their interactions with the cofactor NADP(H). Compound A, a pyridyl amide bound more efficiently to the NADPH-bound form of 11beta-hydroxysteroid dehydrogenase 1. Compound B, an adamantyl triazole, was unaffected by NADP(H) binding and the sulfonamide, Compound C, showed preferential binding to the NADP+ -bound form of 11beta-hydroxysteroid dehydrogenase 1. These differences were found to augment significant selectivity towards inhibition of the reductase reaction versus the dehydrogenase reaction. This selectivity may translate to differences in the in vivo effects of 11beta-hydroxysteroid dehydrogenase 1 inhibitors.  相似文献   

8.
9.
10.
2,5,5-Trisubstituted oxazolones were identified as potent inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). The synthesis, structure-activity relationship and metabolic stability of these compounds are presented.  相似文献   

11.
Head and neck squamous cell carcinomas (HNSCC) are at a high risk of recurrence and multimodal therapy have not significantly improved survival in recent decades. Although immune checkpoint inhibitors (ICIs) are effective in a small proportion of HNSCC patients, the majority do not respond. In this study, we for the first time revealed that xenobiotic metabolic process was significantly associated with resistance to programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors in HNSCC and found that ATP binding cassette subfamily B member 11 (ABCB11) accumulated in immature tertiary lymphoid structures (TLSs) predicted worse progression-free survival (PFS) and overall survival (OS) after PD-1/PD-L1 inhibitors therapy. Moreover, the expression of cytochrome P450 1A2 (CYP1A2), a cytochrome P450 (CYP) enzyme that participates in xenobiotic metabolic process, was significantly upregulated in CD45+ABCB11+ tumor-infiltrating lymphocytes (TILs) compared with CD45+ABCB11TILs in HNSCC tissues. Whole slide scans of 110 HNSCC tissues with hematoxylin-eosin (HE) and multispectral immuno-fluorescent (mIF) staining revealed that ABCB11 had a high co-expression with CYP1A2 in immature TLSs, and colocalization of ABCB11 and CYP1A2 in immature TLs significantly associated with high infiltration of immunosuppressive T-regulatory (Treg). Our study revealed that ABCB11 accumulated in immature TLSs might upregulate CYP1A2 to mediate xenobiotic metabolic process, thus increase the immunosuppressive Treg infiltration, and induce resistance to PD-1/PD-L1 inhibitors in HNSCC.  相似文献   

12.
Mining the NCI antiviral compounds for HIV-1 integrase inhibitors   总被引:2,自引:0,他引:2  
HIV-1 integrase (IN) is an essential enzyme for effective viral replication and is a validated target for the development of antiretroviral drugs. Currently, there are no approved drugs targeting this enzyme. In this study, we have identified 11 structurally diverse small-molecule inhibitors of IN. These compounds have been selected by mining the moderately active antiviral molecules from a collection of 90,000 compounds screened by the National Cancer Institute (NCI) Antiviral Program. These compounds, which were screened at the NCI during the past 20 years, resulted in approximately 4000 compounds labeled as 'moderately active.' In our study, chalcone 11 shows the most potent activity with an IC(50) of 2+/-1 microM against purified IN in the presence of both Mn(2+) and Mg(2+) as cofactors. Docking simulations using the 11 identified inhibitors as a training set have elucidated two unique binding areas within the active site: the first encompasses the conserved D64-D116-E152 motif, while the other involves the flexible loop region formed by amino acid residues 140-149. The tested inhibitors exhibit favorable interactions with important amino acid residues through van der Waals and H-bonding contacts.  相似文献   

13.
A series of piperidine amide inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) were identified via modifications of the HTS hit compound 1. The synthesis, in vitro biological evaluation, and structure-activity relationship of these compounds are presented.  相似文献   

14.
High-throughput screening of a small-molecule compound library resulted in the identification of a series of arylsulfonylpiperazines that are potent and selective inhibitors of human 11beta-Hydroxysteroid Dehydrogenase Type 1 (11beta-HSD1). Optimization of the initial lead resulted in the discovery of compound (R)-45 (11beta-HSD1 IC(50)=3nM).  相似文献   

15.
The NK1 and NK2 receptor activity of a series of 5-[(3,5-bis(trifluoromethyl)phenyl)methoxy]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl-1-piperidines was evaluated. Compounds 11d, 11e, 11f, 12a, and 12k were found to be our most potent inhibitors.  相似文献   

16.
A series of adamantyl amide 11beta-HSD1 inhibitors has been discovered and chemically modified. Selected compounds are selective for 11beta-HSD1 over 11beta-HSD2 and possess excellent cellular potency in human and murine 11beta-HSD1 assays. Good pharmacodynamic characteristics are observed in ex vivo assays.  相似文献   

17.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11β-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11β-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11β-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11β-HSD1 inhibitors that inhibit human 11β-HSD1 in the low micromolar range. Docking studies with 1–3 into the crystal structure of human 11β-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series.  相似文献   

18.
11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) catalyzes the interconversion of biologically inactive 11 keto derivatives (cortisone, 11-dehydrocorticosterone) to active glucocorticoids (cortisol, corticosterone) in fat, liver, and other tissues. It is located in the intraluminal compartment of the endoplasmic reticulum. Inasmuch as an oxo-reductase requires NADPH, we reasoned that 11 beta-HSD1 would be metabolically interconnected with the cytosolic pentose pathway because this pathway is the primary producer of reduced cellular pyridine nucleotides. To test this theory, 11 beta-HSD1 activity and pentose pathway were simultaneously measured in isolated intact rodent adipocytes. Established inhibitors of NAPDH production via the pentose pathway (dehydroandrostenedione or norepinephrine) inhibited 11 beta-HSD1 oxo-reductase while decreasing cellular NADPH content. Conversely these compounds slightly augmented the reverse, or dehydrogenase, reaction of 11 beta-HSD1. Importantly, using isolated intact microsomes, the inhibitors did not directly alter the tandem microsomal 11 beta-HSD1 and hexose-6-phosphate dehydrogenase enzyme unit. Metabolites of 11 beta-HSD1 (corticosterone or 11-dehydrocorticosterone) inhibited or increased pentose flux, respectively, demonstrating metabolic interconnectivity. Using isolated intact liver or fat microsomes, glucose-6 phosphate stimulated 11 beta-HSD1 oxo-reductase, and this effect was blocked by selective inhibitors of glucose-6-phosphate transport. In summary, we have demonstrated a metabolic interconnection between pentose pathway and 11 beta-HSD1 oxo-reductase activities that is dependent on cytosolic NADPH production. These observations link cytosolic carbohydrate flux with paracrine glucocorticoid formation. The clinical relevance of these findings may be germane to the regulation of paracrine glucocorticoid formation in disturbed nutritional states such as obesity.  相似文献   

19.
A series of 2-anilinothiazolones were prepared as inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). The most potent compounds contained a 2-chloro or 2-fluoro group on the aniline ring with an isopropyl substituent on the 5-position of the thiazolone ring (compounds 2 and 3, respectively). The binding mode was determined through the X-ray co-crystal structure of the enzyme with compound 3. This compound was also approximately 70-fold selective over 11beta-HSD2 and was orally bioavailable in rat pharmacokinetic studies. However, compound 3 was >580-fold less active in the 11beta-HSD1 cell assay when tested in the presence of 3% human serum albumin.  相似文献   

20.
In order to create novel analgesic agents without gastric disturbance, structurally simple cyclooxygenase-1 (COX-1) inhibitors with a benzenesulfonanilide skeleton were designed and synthesized. As a result, compounds 11f and 15a, which possess a p-amino group on the benzenesulfonyl moiety and p-chloro group on the anilino moiety, showed COX-1-selective inhibition. Moreover compound 11f, which is the most potent compound in this study showed more potent analgesic activity than that of aspirin at 30 mg/kg by po. The anti-inflammatory activity and gastric damage, however, were very weak or not detectably different from aspirin. Since the structure of our COX-1 inhibitors are very simple, they may be useful as lead compounds for superior COX-1 inhibitors as analgesic agents without gastric disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号