共查询到20条相似文献,搜索用时 0 毫秒
1.
Triggered by agonist binding to cell surface receptors, the heterotrimeric G proteins dissociate into and βγ subunits, each activating distinct second messenger pathways. Peptides from the primary sequences of receptors, G proteins, and effectors have been used to study the molecular interactions between these proteins. Receptor-derived peptides from the second, third and fourth intracellular loops and certain naturally occurring peptides antagonize G protein interactions and can directly activate G protein. These peptides bind to G protein sites that include the N and C terminal regions of the subunit and a yet to be identified region of the β subunit. Peptides have also been useful in characterizing G protein-effector interactions. The identification of the contact sites between proteins involved in G protein signal transduction should aid in the development of non-peptide mimetic therapeutics which could specifically modify G protein-mediated cellular responses. 相似文献
2.
3.
Due to the enormous importance of plants as a source of both food and raw materials, an understanding of the control of their growth and development is imperative. Basic to this understanding is the identification of the genes that enable the plant to adapt to its environment while at the same time adhering to its basic developmental plan. The aims of this review are first to briefly summarize the various approaches that have been used to identify these plant signaling genes and second to give an overview of the genes that have been cloned so far and what these genes may tell us about the nature of signal transduction in plants.
The advent of modern molecular biology and molecular genetics has revolutionized our ability to unravel the complexities of plant signal transduction pathways. A whole battery of techniques are now available to identify the genes that control the plants development and ability to adapt to its environment.65 Each technique has its own strengths and weaknesses and must be carefully selected by the researcher according to the question that he or she would like to ask. 相似文献
4.
V. N. Zholkevich N. V. Zhukovskaya M. S. Popova 《Russian Journal of Plant Physiology》2007,54(4):487-490
In detached roots of etiolated maize (Zea mays L.) seedlings, neurotransmitters, adrenalin and noradrenalin, stimulated exudation by increasing the root pressure due to activation of its metabolic component. In these treatments, the osmotic pressure of the exudate was somewhat reduced. In contrast, a temperature coefficient Q10 was increased, which as in accordance with the increase of the absolute value of the metabolic component and its proportion in the total root pressure. To obtain some information about transmitting the signals induced by adrenalin and noradrenalin action on water transport, we used two inhibitors of the most important and universal elements of signaling pathways, staurosporine (the inhibitor of protein kinases) and okadaic acid (the inhibitor of protein phosphatases). In control roots, staurosporine markedly slowed and okadaic acid accelerated exudation. In the presence of staurosporine in the incubation medium, a stimulatory effect of both neurotransmitters was completely abolished and the rate of exudation became even below the control value. Okadaic acid exerted an opposite action: it augmented markedly stimulatory effects of both neurotrasmitters. The data obtained indicated the involvement of protein kinases and protein phosphatases in transduction of signals induced by adrenalin and noradrenalin, which stimulated root water-pumping activity. 相似文献
5.
Lundin L Rönnstrand L Cross M Hellberg C Lindahl U Claesson-Welsh L 《Experimental cell research》2003,287(1):190-198
The sulfated regions in heparan sulfate and heparin are known to affect fibroblast growth factor (FGF) function. We have studied the mechanism whereby heparin directs FGF-2-induced FGF receptor-1 (FGFR-1) signal transduction. FGF-2 alone stimulated maximal phosphorylation of Src homology domain 2 tyrosine phosphatase (SHP-2) and the adaptor molecule Crk, in heparan sulfate-deficient Chinese hamster ovary (CHO) 677 cells expressing FGFR-1. In contrast, for phospholipase Cgamma(1) (PLCgamma(1)) and the adaptor molecule Shb to be maximally tyrosine-phosphorylated, cells had to be stimulated with both FGF-2 and heparin (100 ng/ml). Tyrosine residues 463 in the juxtamembrane domain and 766 in the C-terminal tail in FGFR-1 are known to bind Crk and PLCgamma(1), respectively. Analysis of tryptic phosphopeptide maps of FGFR-1 from cells stimulated with FGF-2 alone and FGF-2 together with heparin showed that FGF-2 alone stimulated a several-fold increase in tyrosine 463 in the juxtamembrane domain. In contrast, heparin had to be included in order for tyrosine 766 to be phosphorylated to the same fold level. Our data imply that tyrosine 463 is phosphorylated and able to transduce signals in response to FGF-2 treatment alone; furthermore, we suggest that FGFR-1 dimerization/kinase activation is stabilized by heparin. 相似文献
6.
Regina Samaga Douglas A Lauffenburger Steffen Klamt Peter K Sorger 《Molecular systems biology》2009,5(1)
Large‐scale protein signalling networks are useful for exploring complex biochemical pathways but do not reveal how pathways respond to specific stimuli. Such specificity is critical for understanding disease and designing drugs. Here we describe a computational approach—implemented in the free CNO software—for turning signalling networks into logical models and calibrating the models against experimental data. When a literature‐derived network of 82 proteins covering the immediate‐early responses of human cells to seven cytokines was modelled, we found that training against experimental data dramatically increased predictive power, despite the crudeness of Boolean approximations, while significantly reducing the number of interactions. Thus, many interactions in literature‐derived networks do not appear to be functional in the liver cells from which we collected our data. At the same time, CNO identified several new interactions that improved the match of model to data. Although missing from the starting network, these interactions have literature support. Our approach, therefore, represents a means to generate predictive, cell‐type‐specific models of mammalian signalling from generic protein signalling networks. 相似文献
7.
油菜素内酯(brassinosteroids,BRs)是一类重要的类固醇激素,参与调控植物生长发育的许多过程。结合应用遗传学、生物化学以及蛋白质组学等研究手段现已基本阐明了BR信号转导的主要过程。BRI1作为受体在细胞表面感知BR,BRI1抑制子BKI1从质膜上解离下来,使BRI1与其共受体BAK1结合。BRI1和BAK1通过顺序磷酸化将BR信号完全激活。活化的BRI1将BSK磷酸化激活,BSK活化BSU1,BSU1将BIN2去磷酸化使其失活,解除BIN2对BES1/BZR1的抑制功能。PP2A可以将BES1/BZR1去磷酸化激活,又可以将受体BRI1去磷酸化促使其降解。BR信号的传递最终使去磷酸化状态的BES1/BZR1在细胞内累积,激活BR信号通路下游的转录调控。 相似文献
8.
Ethylene signal transduction 总被引:22,自引:0,他引:22
9.
Cytokinins are essential hormones for the proper growth and development of plants. They exert their actions through the phosphorylation of two-component signaling factors. The two-component elements in cytokinin signaling display not only overlapping, but also specific functions throughout a life cycle. These elements regulate the development of shoots, roots, and inflorescence meristems inArabidopsis; shoot meristems in rice; and nodule formation in the lotus. They are also involved in interactions between plants and pathogens. In this review, we examine the mechanism for signaling events initiated by cytokinins inArabidopsis. 相似文献
10.
Kimura N Shimada N Ishijima Y Fukuda M Takagi Y Ishikawa N 《Journal of bioenergetics and biomembranes》2003,35(1):41-47
The role of nucleoside diphosphate (NDP) kinase with special reference to mammalian signal transduction systems was described. The interaction between NDP kinases and G proteins was reevaluated in view of their protein structural information and its significance was extended further on the basis of recent findings obtained with small molecular weight G proteins such as Rad, menin, and Rac. Meanwhile, observations suggesting involvement of NDP kinases in the regulation of cell growth and differentiation led to the realization that NDP kinases may play a crucial role in receptor tyrosine kinase signal transduction systems. In fact, a number of experimental results, particularly obtained with PC12 cells, implicate that NDP kinases appear to regulate differentiation marker proteins and cell-cycle-associated proteins cooperatively. Consequently, we propose a hypothesis that NDP kinases might act like a molecular switch to determine the cell fate toward proliferation or differentiation in response to environmental signals. 相似文献
11.
Calcium and signal transduction in plants 总被引:1,自引:0,他引:1
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants. 相似文献
12.
Simon J. Morley 《Molecular biology reports》1994,19(3):221-231
Control of polypeptide synthesis plays an important role in cell proliferation and translation rates generally reflect the growth state of the cultured eukaryotic cell. Physiological regulation of protein synthesis is almost always exerted at the level of polypeptide chain initiation, with the binding of mRNA to the small ribosomal subunit a rate-limiting step in many cell systems. Studies have indicated key roles in the regulation of protein synthesis for the structural features of mRNA molecules and phosphorylation of initiation factors which catalyse this process. This review focusses on translational regulation at the level of mRNA binding to the ribosome and the role of phosphorylation of initiation factors in mediating both quantitative and qualitative control. The identity of putative kinases which may mediate these processes is addressed and a possible model for the role of a transient activation of initiation factors in cell growth or differentiation is presented. 相似文献
13.
肾小管上皮细胞转分化(tubular epithelial to menchymal transdifferentiation,EMT)是肾小管间质纤维化的重要病理机制之一。致纤维化细胞因子TGF-β通过几种信号转导途径调节EMT,其中TGF-β/Smads信号通路发挥核心作用。目前研究表明,Smad7、HGF、BMP-7等可通过调控Smads信号通路而逆转EMT,这为肾间质纤维化的防治提供了新的思路。该文主要介绍TGF-β/Smads信号通路在EMT发生的作用,以及Smad7、SnoN、HGF、BMP-7等分子是如何通过抑制Smads信号通路而发挥逆转EMT作用的。 相似文献
14.
15.
Using biochemical techniques similar to those used by Krebs and Fischer in elucidating the cAMP kinase cascade, a protein kinase cascade has been found that represents a new pathway for signal transduction. This pathway is activated in almost all cells that have been examined by many different growth and differentiations factors suggesting control of different cell responses. At this writing, four tiers of growth factor regulated kinases, each tier represented by more than one enzyme, have been reconstitutedin vitro to form the MAP kinase cascade. Preliminary findings suggesting multiple feedback or feedforward regulation of several components in the cascade predict higher complexity than a simple linear pathway. 相似文献
16.
Baldisseri DM Margolis JW Weber DJ Koo JH Margolis FL 《Journal of molecular biology》2002,319(3):823-837
Olfactory marker protein (OMP) is a ubiquitous, cytoplasmic protein found in mature olfactory receptor neurons of all vertebrates. Electrophysiological and behavioral studies demonstrate that it is a modulator of the olfactory signal transduction pathway. Here, we demonstrate that the solution structure of OMP, as determined by NMR studies, is a single globular domain protein comprised of eight beta-strands forming two beta-sheets oriented orthogonally to one another, thus exhibiting a "beta-clam" or "beta-sandwich" fold: beta-sheet 1 is comprised of beta3-beta8-beta1-beta2 and beta-sheet 2 contains beta6-beta5-beta4-beta7. Insertions include two, long alpha-helices located on opposite sides of the beta-clam and three flexible loops. The juxtaposition of beta-strands beta6-beta5-beta4-beta7-beta2-beta1-beta8-beta3 forms a continuously curved surface and encloses one side of the beta-clam. The "cleft" formed by the two beta-sheets is opposite to the closed end of the beta-clam. Using a peptide titration series, we have identified this cleft as the binding surface for a peptide derived from the Bex1 protein. The highly conserved Omega-loop structure adjacent to the Bex1 peptide-binding surface found in OMP may be the site of additional OMP-protein interactions related to its role in modulating olfactory signal transduction. Thus, the interaction between the OMP and Bex1 proteins could facilitate the interaction between OMP and other components of the olfactory signaling pathway. 相似文献
17.
Loss of Twist gene function arrests the growth of the limb bud shortly after its formation. In the Twist(-/-) forelimb bud, Fgf10 expression is reduced, Fgf4 is not expressed, and the domain of Fgf8 and Fgfr2 expression is altered. This is accompanied by disruption of the expression of genes (Shh, Gli1, Gli2, Gli3, and Ptch) associated with SHH signalling in the limb bud mesenchyme, the down-regulation of Bmp4 in the apical ectoderm, the absence of Alx3, Alx4, Pax1, and Pax3 activity in the mesenchyme, and a reduced potency of the limb bud tissues to differentiate into osteogenic and myogenic tissues. Development of the hindlimb buds in Twist(-/-) embryos is also retarded. The overall activity of genes involved in SHH signalling is reduced.Fgf4 and Fgf8 expression is lost or reduced in the apical ectoderm, but other genes (Fgf10, Fgfr2) involved with FGF signalling are expressed in normal patterns. Twist(+/-);Gli3(+/XtJ) mice display more severe polydactyly than that seen in either Twist(+/-) or Gli3(+/XtJ) mice, suggesting that there is genetic interaction between Twist and Gli3 activity. Twist activity is therefore essential for the growth and differentiation of the limb bud tissues as well as regulation of tissue patterning via the modulation of SHH and FGF signal transduction. 相似文献
18.
Antoine R Huvent I Chemlal K Deray I Raze D Locht C Jacob-Dubuisson F 《Journal of molecular biology》2005,351(4):799-809
A new type of solute importer has been identified recently in various bacterial genera and called the tripartite tricarboxylate transporter (TTT). TTTs consist of two cytoplasmic membrane proteins and a periplasmic solute-binding protein. In the whooping cough agent Bordetella pertussis, a TTT system that has been called BctCBA mediates the uptake of citrate, with BctA and BctB being the membrane components and BctC, the periplasmic protein. Here, we describe that the expression of the bctCBA operon is induced by the presence of citrate in the milieu. The signalling cascade involves both BctC and the signal transduction two-component system BctDE, encoded by an operon adjacent to bctCBA. Furthermore, two-hybrid analyses and affinity chromatography experiments indicated that citrate-liganded BctC interacts with the periplasmic domain of the sensor protein, BctE. Thus, BctC is part of the signalling cascade leading to upregulation of the transporter operon in the presence of its solute, a new function for periplasmic binding proteins of TT transporters. 相似文献
19.
MAP kinase signal transduction pathways in plants 总被引:22,自引:2,他引:22
Peter C. Morris 《The New phytologist》2001,151(1):67-89
20.
Michelle D. Hunt John A. Ryals Dr. Dieter Reinhardt 《Critical Reviews in Plant Sciences》1996,15(5-6):583-606
Systemic acquired resistance (SAR) is an inducible plant defense response in which a prior foliar pathogen infection activates resistance in noninfected foliar tissues. Salicylic acid (SA) accumulation is essential for the establishment of SAR. While SA is probably not the long‐distance systemic signal instrumental for SAR activation, it is required for transduction of the signal in noninfected tissues. Although SAR was first described as a response to necrogenic pathogen infection, synthetic chemicals have been identified that effectively activate SAR. Elucidation of SAR signal transduction has been facilitated by the identification and characterization of Arabidopsis mutants. Disease lesion mimic mutants exhibit constitutive SAR as well as spontaneous lesion formation similar to pathogen‐associated hypersensitive cell death. Some disease lesion mimic mutants do not exhibit a lesioned phenotype when SA accumulation is prevented, thereby providing evidence for a feedback loop in SAR signal transduction. Moreover, characterization of mutants compromised for SAR activation has provided additional evidence for common signaling components between SAR and gene‐for‐gene resistance. 相似文献