首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences between individual human genomes, or between human and cancer genomes, range in scale from single nucleotide variants (SNVs) through intermediate and large-scale duplications, deletions, and rearrangements of genomic segments. The latter class, called structural variants (SVs), have received considerable attention in the past several years as they are a previously under appreciated source of variation in human genomes. Much of this recent attention is the result of the availability of higher-resolution technologies for measuring these variants, including both microarray-based techniques, and more recently, high-throughput DNA sequencing. We describe the genomic technologies and computational techniques currently used to measure SVs, focusing on applications in human and cancer genomics.

What to Learn in This Chapter

  • Current knowledge about the prevalence of structural variation in human and cancer genomes.
  • Strategies for using microarray and high-throughput DNA sequencing technologies to measure structural variation.
  • Computational techniques to detect structural variants from DNA sequencing data.
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

2.
Structural genomic variations play an important role in human disease and phenotypic diversity. With the rise of high-throughput sequencing tools, mate-pair/paired-end/single-read sequencing has become an important technique for the detection and exploration of structural variation. Several analysis tools exist to handle different parts and aspects of such sequencing based structural variation analyses pipelines. A comprehensive analysis platform to handle all steps, from processing the sequencing data, to the discovery and visualization of structural variants, is missing. The ViVar platform is built to handle the discovery of structural variants, from Depth Of Coverage analysis, aberrant read pair clustering to split read analysis. ViVar provides you with powerful visualization options, enables easy reporting of results and better usability and data management. The platform facilitates the processing, analysis and visualization, of structural variation based on massive parallel sequencing data, enabling the rapid identification of disease loci or genes. ViVar allows you to scale your analysis with your work load over multiple (cloud) servers, has user access control to keep your data safe and is easy expandable as analysis techniques advance. URL: https://www.cmgg.be/vivar/  相似文献   

3.
Technological advances make it possible to use high-throughput sequencing as a primary discovery tool of medical genetics, specifically for assaying rare variation. Still this approach faces the analytic challenge that the influence of very rare variants can only be evaluated effectively as a group. A further complication is that any given rare variant could have no effect, could increase risk, or could be protective. We propose here the C-alpha test statistic as a novel approach for testing for the presence of this mixture of effects across a set of rare variants. Unlike existing burden tests, C-alpha, by testing the variance rather than the mean, maintains consistent power when the target set contains both risk and protective variants. Through simulations and analysis of case/control data, we demonstrate good power relative to existing methods that assess the burden of rare variants in individuals.  相似文献   

4.
Since the emergence of high-throughput genome sequencing platforms and more recently the next-generation platforms, the genome databases are growing at an astronomical rate. Tremendous efforts have been invested in recent years in understanding intriguing complexities beneath the vast ocean of genomic data. This is apparent in the spurt of computational methods for interpreting these data in the past few years. Genomic data interpretation is notoriously difficult, partly owing to the inherent heterogeneities appearing at different scales. Methods developed to interpret these data often suffer from their inability to adequately measure the underlying heterogeneities and thus lead to confounding results. Here, we present an information entropy-based approach that unravels the distinctive patterns underlying genomic data efficiently and thus is applicable in addressing a variety of biological problems. We show the robustness and consistency of the proposed methodology in addressing three different biological problems of significance—identification of alien DNAs in bacterial genomes, detection of structural variants in cancer cell lines and alignment-free genome comparison.  相似文献   

5.
Identifying variants using high-throughput sequencing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical artifact results from incorrectly aligning experimentally observed sequences to their true genomic origin (‘mismapping’) and inferring differences in mismapped sequences to be true variants. We developed BlackOPs, an open-source tool that simulates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklists contain thousands of artifact variants that are indistinguishable from true variants and, for a given sample, are expected to be almost completely false positives. We show that these blacklist positions are specific to the alignment algorithm and read length used, and BlackOPs allows users to generate a blacklist specific to their experimental setup. We queried the dbSNP and COSMIC variant databases and found numerous variants indistinguishable from mapping errors. We demonstrate how filtering against blacklist positions reduces the number of potential false variants using an RNA-seq glioblastoma cell line data set. In summary, accounting for mapping-caused variants tuned to experimental setups reduces false positives and, therefore, improves genome characterization by high-throughput sequencing.  相似文献   

6.
High-throughput sequencing technologies have offered in recent years new opportunities to study genome variations. These studies have mostly focused on single nucleotide polymorphisms, small insertions or deletions and on copy number variants. Other structural variants, such as large insertions or deletions, tandem duplications, translocations, and inversions are less well-studied, despite that some have an important impact on phenotypes. In the present study, we performed a large-scale survey of structural variants in cattle. We report the identification of 6,426 putative structural variants in cattle extracted from whole-genome sequence data of 62 bulls representing the three major French dairy breeds. These genomic variants affect DNA segments greater than 50 base pairs and correspond to deletions, inversions and tandem duplications. Out of these, we identified a total of 547 deletions and 410 tandem duplications which could potentially code for CNVs. Experimental validation was carried out on 331 structural variants using a novel high-throughput genotyping method. Out of these, 255 structural variants (77%) generated good quality genotypes and 191 (75%) of them were validated. Gene content analyses in structural variant regions revealed 941 large deletions removing completely one or several genes, including 10 single-copy genes. In addition, some of the structural variants are located within quantitative trait loci for dairy traits. This study is a pan-genome assessment of genomic variations in cattle and may provide a new glimpse into the bovine genome architecture. Our results may also help to study the effects of structural variants on gene expression and consequently their effect on certain phenotypes of interest.  相似文献   

7.
Genomic structural variation (SV), a common hallmark of cancer, has important predictive and therapeutic implications. However, accurately detecting SV using high-throughput sequencing data remains challenging, especially for ‘targeted’ resequencing efforts. This is critically important in the clinical setting where targeted resequencing is frequently being applied to rapidly assess clinically actionable mutations in tumor biopsies in a cost-effective manner. We present BreaKmer, a novel approach that uses a ‘kmer’ strategy to assemble misaligned sequence reads for predicting insertions, deletions, inversions, tandem duplications and translocations at base-pair resolution in targeted resequencing data. Variants are predicted by realigning an assembled consensus sequence created from sequence reads that were abnormally aligned to the reference genome. Using targeted resequencing data from tumor specimens with orthogonally validated SV, non-tumor samples and whole-genome sequencing data, BreaKmer had a 97.4% overall sensitivity for known events and predicted 17 positively validated, novel variants. Relative to four publically available algorithms, BreaKmer detected SV with increased sensitivity and limited calls in non-tumor samples, key features for variant analysis of tumor specimens in both the clinical and research settings.  相似文献   

8.
9.
The discovery of genomic structural variants (SVs), such as copy number variants (CNVs), is essential to understand genetic variation of human populations and complex diseases. Over recent years, the advent of new high-throughput sequencing (HTS) platforms has opened many opportunities for SVs discovery, and a very promising approach consists in measuring the depth of coverage (DOC) of reads aligned to the human reference genome. At present, few computational methods have been developed for the analysis of DOC data and all of these methods allow to analyse only one sample at time. For these reasons, we developed a novel algorithm (JointSLM) that allows to detect common CNVs among individuals by analysing DOC data from multiple samples simultaneously. We test JointSLM performance on synthetic and real data and we show its unprecedented resolution that enables the detection of recurrent CNV regions as small as 500 bp in size. When we apply JointSLM to analyse chromosome one of eight genomes with different ancestry, we identify 3000 regions with recurrent CNVs of different frequency and size: hierarchical clustering on these regions segregates the eight individuals in two groups that reflect their ancestry, demonstrating the potential utility of JointSLM for population genetics studies.  相似文献   

10.
The use of capillary electrophoresis with fluorescently labeled nucleic acids revolutionized DNA sequencing, effectively fueling the genomic revolution. We present an application of this technology for the high-throughput structural analysis of nucleic acids by chemical and enzymatic mapping ('footprinting'). We achieve the throughput and data quality necessary for genomic-scale structural analysis by combining fluorophore labeling of nucleic acids with novel quantitation algorithms. We implemented these algorithms in the CAFA (capillary automated footprinting analysis) open-source software that is downloadable gratis from https://simtk.org/home/cafa. The accuracy, throughput and reproducibility of CAFA analysis are demonstrated using hydroxyl radical footprinting of RNA. The versatility of CAFA is illustrated by dimethyl sulfate mapping of RNA secondary structure and DNase I mapping of a protein binding to a specific sequence of DNA. Our experimental and computational approach facilitates the acquisition of high-throughput chemical probing data for solution structural analysis of nucleic acids.  相似文献   

11.
H Zhan  S Xu 《PloS one》2012,7(8):e44173
It is widely believed that both common and rare variants contribute to the risks of common diseases or complex traits and the cumulative effects of multiple rare variants can explain a significant proportion of trait variances. Advances in high-throughput DNA sequencing technologies allow us to genotype rare causal variants and investigate the effects of such rare variants on complex traits. We developed an adaptive ridge regression method to analyze the collective effects of multiple variants in the same gene or the same functional unit. Our model focuses on continuous trait and incorporates covariate factors to remove potential confounding effects. The proposed method estimates and tests multiple rare variants collectively but does not depend on the assumption of same direction of each rare variant effect. Compared with the Bayesian hierarchical generalized linear model approach, the state-of-the-art method of rare variant detection, the proposed new method is easy to implement, yet it has higher statistical power. Application of the new method is demonstrated using the well-known data from the Dallas Heart Study.  相似文献   

12.
One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with low coverage data. However, % of inversions located between segmental duplications are expected to go undetected by the most common sequencing strategies. In general, longer DNA libraries improve the detectability of inversions far better than increments of the coverage depth or the read length. Finally, we review the performance of three algorithms to detect inversions —SVDetect, GRIAL, and VariationHunter—, identify common pitfalls, and reveal important differences in their breakpoint precisions. These results stress the importance of the sequencing strategy for the detection of structural variants, especially inversions, and offer guidelines for the design of future genome sequencing projects.  相似文献   

13.
Missense variants are alterations to protein coding sequences that result in amino acid substitutions. They can be deleterious if the amino acid is required for maintaining structure or/and function, but are likely to be tolerated at other sites. Consequently, missense variation within a healthy population can mirror the effects of negative selection on protein structure and function, such that functional sites on proteins are often depleted of missense variants. Advances in high-throughput sequencing have dramatically increased the sample size of available human variation data, allowing for population-wide analysis of selective pressures. In this study, we developed a convenient set of tools, called 1D-to-3D, for visualizing the positions of missense variants on protein sequences and structures. We used these tools to characterize human homologues of the ARID family of gene regulators. ARID family members are implicated in multiple cancer types, developmental disorders, and immunological diseases but current understanding of their mechanistic roles is incomplete. Combined with phylogenetic and structural analyses, our approach allowed us to characterise sites important for protein-protein interactions, histone modification recognition, and DNA binding by the ARID proteins. We find that comparing missense depletion patterns among paralogs can reveal sub-functionalization at the level of domains. We propose that visualizing missense variants and their depletion on structures can serve as a valuable tool for complementing evolutionary and experimental findings.  相似文献   

14.
Following the complete genome sequencing of an increasing number of organisms, structural biology is engaging in a systematic approach of high-throughput structure determination called structural genomics to create a complete inventory of protein folds/structures that will help predict functions for all proteins. First results show that structural genomics will be highly effective in finding functional annotations for proteins of unknown function.  相似文献   

15.
16.
The three-dimensional (3D) structure of the genome is important for orchestration of gene expression and cell differentiation. While mapping genomes in 3D has for a long time been elusive, recent adaptations of high-throughput sequencing to chromosome conformation capture (3C) techniques, allows for genome-wide structural characterization for the first time. However, reconstruction of "consensus" 3D genomes from 3C-based data is a challenging problem, since the data are aggregated over millions of cells. Recent single-cell adaptations to the 3C-technique, however, allow for non-aggregated structural assessment of genome structure, but data suffer from sparse and noisy interaction sampling. We present a manifold based optimization (MBO) approach for the reconstruction of 3D genome structure from chromosomal contact data. We show that MBO is able to reconstruct 3D structures based on the chromosomal contacts, imposing fewer structural violations than comparable methods. Additionally, MBO is suitable for efficient high-throughput reconstruction of large systems, such as entire genomes, allowing for comparative studies of genomic structure across cell-lines and different species.  相似文献   

17.
基因表达谱芯片和核酸序列数据在癌症研究中占有很重要的地位。基因表达谱芯片被广泛的应用在医学研究中,它的主要优势在于灵敏快速成本低,缺点只能对现有基因进行研究,无法进行新基因发现以及变异等方面的研究;而核酸序列数据在这方面则具有很大优势。总体来说,二者在癌症研究中都发挥着巨大的作用。随着精准医学的不断发展,对这些高通量数据的深入研究可以有助于人们进一步了解癌症的分子机制,从而加速个体化治疗的进程。  相似文献   

18.
Copy-number variations (CNVs) are widespread in the human genome, but comprehensive assignments of integer locus copy-numbers (i.e., copy-number genotypes) that, for example, enable discrimination of homozygous from heterozygous CNVs, have remained challenging. Here we present CopySeq, a novel computational approach with an underlying statistical framework that analyzes the depth-of-coverage of high-throughput DNA sequencing reads, and can incorporate paired-end and breakpoint junction analysis based CNV-analysis approaches, to infer locus copy-number genotypes. We benchmarked CopySeq by genotyping 500 chromosome 1 CNV regions in 150 personal genomes sequenced at low-coverage. The assessed copy-number genotypes were highly concordant with our performed qPCR experiments (Pearson correlation coefficient 0.94), and with the published results of two microarray platforms (95-99% concordance). We further demonstrated the utility of CopySeq for analyzing gene regions enriched for segmental duplications by comprehensively inferring copy-number genotypes in the CNV-enriched >800 olfactory receptor (OR) human gene and pseudogene loci. CopySeq revealed that OR loci display an extensive range of locus copy-numbers across individuals, with zero to two copies in some OR loci, and two to nine copies in others. Among genetic variants affecting OR loci we identified deleterious variants including CNVs and SNPs affecting ~15% and ~20% of the human OR gene repertoire, respectively, implying that genetic variants with a possible impact on smell perception are widespread. Finally, we found that for several OR loci the reference genome appears to represent a minor-frequency variant, implying a necessary revision of the OR repertoire for future functional studies. CopySeq can ascertain genomic structural variation in specific gene families as well as at a genome-wide scale, where it may enable the quantitative evaluation of CNVs in genome-wide association studies involving high-throughput sequencing.  相似文献   

19.
A series of Cas9 variants have been developed to improve the editing fidelity or targeting range of CRISPR–Cas9. Here, we employ a high-throughput sequencing approach primer-extension-mediated sequencing to analyze the editing efficiency, specificity and protospacer adjacent motif (PAM) compatibility of a dozen of SpCas9 variants at multiple target sites in depth, and our findings validate the high fidelity or broad editing range of these SpCas9 variants. With regard to the PAM-flexible SpCas9 variants, we detect significantly increased levels of off-target activity and propose a trade-off between targeting range and editing specificity for them, especially for the near-PAM-less SpRY. Moreover, we use a deep learning model to verify the consistency and predictability of SpRY off-target sites. Furthermore, we combine high-fidelity SpCas9 variants with SpRY to generate three new SpCas9 variants with both high fidelity and broad editing range. Finally, we also find that the existing SpCas9 variants are not effective in suppressing genome instability elicited by CRISPR–Cas9 editing, raising an urgent issue to be addressed.  相似文献   

20.
The goal of DNA sequencing and genotyping is to efficiently generate accurate high-throughput digital genetic information that unambiguously identifies sources of genetic variation and clearly distinguishes heterozygous from homozygous variants. Recent advances in mass-spectrometry-based DNA sequencing and genotyping bode well for meeting these criteria. Pilot studies show that these recently developed approaches allow unambiguous multiplex detection of heterozygous variants and the identification of deletion and insertion variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号