首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Embryoid bodies (EBs) are the three-dimensional aggregates of pluripotent stem cells that are used as a model system for the in vitro differentiation. EBs mimic the early stages of embryogenesis and are considered as a potential biomimetic body in tuning the stem cell fate. Although EBs have a spheroid shape, they are not formed accidentally by the agglomeration of cells; they are formed by the deliberate and programmed aggregation of stem cells in a complex topological and biophysical microstructure instead. EBs could be programmed to promisingly differentiate into the desired germ layers with specific cell lineages, in response to intra- and extra-biochemical and biomechanical signals. Hippo signaling and mechanotransduction are the key pathways in controlling the formation and differentiation of EBs. The activity of the Hippo pathway strongly relies on cell–cell junctions, cell polarity, cellular architecture, cellular metabolism, and mechanical cues in the surrounding microenvironment. Although the Hippo pathway was initially thought to limit the size of the organ by inhibiting the proliferation and the promotion of apoptosis, the evidence suggests that this pathway even regulates stem cell self-renewal and differentiation. Considering the abovementioned explanations, the present study investigated the interplay of the Hippo signaling pathway, mechanotransduction, differentiation, and proliferation pathways to draw the molecular network involved in the control of EBs fate. In addition, this study highlighted several neglected critical parameters regarding EB formation, in the interplay with the Hippo core component involved in the promising differentiation.  相似文献   

3.
《Cellular signalling》2014,26(2):186-191
The mechanical signals transduced from cellular microenvironment can regulate cell shape and affect cell fate determination. However, how these mechanical signals are transduced to regulate biological processes of cells has remained elusive. Recent studies had elucidated a novel mechanism through which the interactions between mechanical signals from extracellular matrix and cell behavior regulation converged on the function of core components in Hippo signaling pathway, including YAP and TAZ in mammals. Moreover, several very recent studies have found a new crosstalk between Wnt and Hippo signaling in the regulation of cell fate determination. Such mechanism may explain how mechanical signals from microenvironment can regulate cell behavior and determine cell fate.  相似文献   

4.
近年来,有研究表表明从细胞微环境中转化而来的机械信号可以调控细胞形状和影响细胞的命运。然而,这些机械信号转化成调节细胞生物过程的信号的机制仍然不是十分清楚。最新研究已阐明细胞可通过来自细胞外基质(extracellular matrix,ECM)的机械信号和细胞行为调控之间的相互作用来募集Hippo信号通路中的核心组件YAP/TAZ的作用机制。此外,研究发现在Wnt和Hippo信号之间的串扰是调节细胞命运的核心。这些机制可以解释力学微环境的信号是如何调节细胞行为和决定细胞命运的。本文重点对ECM和YAP/TAZ在决定细胞命运的过程中的作用机制展开系统综述。  相似文献   

5.
Over the past decade, the Hippo signaling cascade has been linked to organ size regulation in mammals. Indeed, modulation of the Hippo pathway can have potent effects on cellular proliferation and/or apoptosis and a deregulation of the pathway often leads to tumor development. Importantly, emerging evidence indicates that the Hippo pathway can modulate its effects on tissue size by the regulation of stem and progenitor cell activity. This role has recently been associated with the central position of the pathway in sensing spatiotemporal or mechanical cues, and translating them into specific cellular outputs. These results provide an attractive model for how the Hippo cascade might sense and transduce cellular ‘neighborhood’ cues into activation of tissue-specific stem or progenitors cells. A further understanding of this process could allow the development of new therapies for various degenerative diseases and cancers. Here, we review current and emerging data linking Hippo signaling to progenitor cell function.  相似文献   

6.
Zyxin links fat signaling to the hippo pathway   总被引:1,自引:0,他引:1  
Rauskolb C  Pan G  Reddy BV  Oh H  Irvine KD 《PLoS biology》2011,9(6):e1000624
  相似文献   

7.
Ye X  Deng Y  Lai ZC 《Developmental biology》2012,369(1):115-123
Tissue growth is achieved through coordinated cellular growth, cell division and apoptosis. Hippo signaling is critical for monitoring tissue growth during animal development. Loss of Hippo signaling leads to tissue overgrowth due to continuous cell proliferation and block of apoptosis. As cells lacking Hippo signaling are similar in size compared to normal cells, cellular growth must be properly maintained in Hippo signaling-deficient cells. However, it is not clear how Hippo signaling might regulate cellular growth. Here we show that loss of Hippo signaling increased Akt (also called Protein Kinase B, PKB) expression and activity, whereas activation of Hippo signaling reduced Akt expression in developing tissues in Drosophila. While yorkie (yki) is sufficient to increase Akt expression, Akt up-regulation caused by the loss of Hippo signaling is strongly dependent on yki, indicating that Hippo signaling negatively regulates Akt expression through Yki inhibition. Consistently, genetic analysis revealed that Akt plays a critical role in facilitating growth of Hippo signaling-defective tissues. Thus, Hippo signaling not only blocks cell division and promotes apoptosis, but also regulates cellular growth by inhibiting the Akt pathway activity.  相似文献   

8.
9.
Hippo signaling is known to maintain balance between cell proliferation and apoptosis via tight regulation of factors, such as metabolic cues, cell-cell contact, and mechanical cues. Cells directly recognize glucose, lipids, and other metabolic cues and integrate multiple signaling pathways, including Hippo signaling, to adjust their proliferation and apoptosis depending on nutrient conditions. Therefore, the dysregulation of the Hippo signaling pathway can promote tumor initiation and progression. Alteration in metabolic cues is considered a major factor affecting the risk of cancer formation and progression. It has recently been shown that the dysregulation of the Hippo signaling pathway, through diverse routes activated by metabolic cues, can lead to cancer with a poor prognosis. In addition, unique crosstalk between metabolic pathways and Hippo signaling pathways can inhibit the effect of anticancer drugs and promote drug resistance. In this review, we describe an integrated perspective of the relationship between the Hippo signaling pathway and metabolic signals in the context of cancer. We also characterize the mechanisms involved in changes in metabolism that are linked to the Hippo signaling pathway in the cancer microenvironment and propose several novel targets for anticancer drug treatment.  相似文献   

10.
Genetic and biochemical studies have defined the Hippo pathway as a central mediator of developmental and pathogenic signals. By directing intracellular signaling events, the Hippo pathway fine-tunes cell proliferation, cell death, and cell-fate decisions, and coordinates these cues to specify animal organ size. Recent studies have revealed that Hippo pathway-mediated processes are interconnected with those of other key signaling cascades, such as those mediated by TGF-β and Wnt growth factors. Moreover, several reports have described a role for cell contact-mediated polarity proteins in Hippo pathway regulation. Emerging details suggest that crosstalk between these signals drives fundamental developmental processes, and deregulated intercellular communication influences disease progression, such as cancer. We review recent data with a focus on how the Hippo pathway integrates its activity with other signaling pathways.  相似文献   

11.
The Hippo signaling pathway has emerged as a critical regulator for organ size control. The serine/threonine protein kinases Mst1 and Mst2, mammalian homologs of the Hippo kinase from Drosophila, play the central roles in the Hippo pathway controlling the cell proliferation, differentiation, and apoptosis during development. Mst1/2 can be activated by cellular stressors and the activation of Mst1/2 might enforce a feedback stimulation system to regulate oxidant levels through several mechanisms, in which regulation of cellular redox state might represent a tumor suppressor function of Mst1/2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in multiple organs, although considerable diversification in the pathway composition and regulation is observed in some of them. Generally, loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by the reduction or elimination of YAP. The Hippo pathway integrates with other signaling pathways e.g. Wnt and Notch pathways and coordinates with them to impact on the tumor pathogenesis and development. Furthermore, Mst1/2 kinases also act as an important regulator in immune cell activation, adhesion, migration, growth, and apoptosis. This review will focus on the recent updates on those aspects for the roles of Mst1/2 kinases.  相似文献   

12.
Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co‐effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically.  相似文献   

13.
Dysfunction of the Hippo pathway enables cells to evade contact inhibition and provides advantages for cancerous overgrowth.However,for a significant portion of human cancer,how Hippo signaling is perturbed remains unknown.To answer this question,we performed a genome-wide screening for genes that affect the Hippo pathway in Drosophila and cross-referenced the hit genes with human cancer genome.In our screen,Prosap was identified as a novel regulator of the Hippo pathway that potently affects tissue growth.Interestingly,a mammalian homolog of Prosap,SHANK2,is the most frequently amplified gene on 11 q13,a major tumor amplicon in human cancer.Gene amplification profile in this 11q13 amplicon clearly indicates selective pressure for SHANK2 amplification.More importantly,across the human cancer genome,SHANK2 is the most frequently amplified gene that is not located within the Myc amplicon.Further studies in multiple human cell lines confirmed that SHANK2 overexpression causes deregulation of Hippo signaling through competitive binding for a LATS1 activator,and as a potential oncogene,SHANK2 promotes cellular transformation and tumor formation in vivo.In cancer cell lines with deregulated Hippo pathway,depletion of SHANK2 restores Hippo signaling and ceases cellular proliferation.Taken together,these results suggest that SHANK2 is an evolutionarily conserved Hippo pathway regulator,commonly amplified in human cancer and potently promotes cancer.Our study for the first time illustrated oncogenic function of SHANK2,one of the most frequently amplified gene in human cancer.Furthermore,given that in normal adult tissues,SHANK2 s expression is largely restricted to the nervous system,SHANK2 may represent an interesting target for anticancer therapy.  相似文献   

14.
胡立桥  周兆才  田伟 《遗传》2017,39(7):659-674
生物体内存在多种信号转导通路参与发育调控和组织稳态维持等重要过程,其信号异常与多种疾病特别是癌症的发生和发展密切相关。进化上高度保守的Hippo信号通路在个体发育和稳态平衡中发挥极为关键的作用。Hippo信号通路主要通过一系列相关激酶的相互作用和级联磷酸化来传递信号,能抑制细胞增殖并促进凋亡,在很多组织器官中控制细胞数量和器官大小。Hippo信号通路在一系列恶性肿瘤中出现显著异常,被认为是癌症治疗和再生医学的重要靶标。目前,Hippo信号通路中大部分关键组分已经确定,而其具体信号调控机制及功能正在完善之中。本文总结了目前已知的Hippo信号通路各蛋白成员的结构信息,重点从结构生物学角度对其信号的转导与调控机制进行分析,并对已有的Hippo信号通路靶向小分子及多肽抑制剂进行梳理,以期深化人们对该通路关键蛋白质机器的理解,并进一步促进相关的功能研究和潜在的治疗干预研发。  相似文献   

15.
16.
The bantam microRNA is a target of the hippo tumor-suppressor pathway   总被引:1,自引:0,他引:1  
  相似文献   

17.
哺乳动物Hippo信号通路:肿瘤治疗的新标靶   总被引:1,自引:0,他引:1  
Xu CM  Wan FS 《遗传》2012,34(3):269-280
Hippo信号通路是首次在果蝇中发现具有调节细胞增殖与凋亡作用的信号通路。最近发现果蝇Hippo信号通路的组成、分子作用机制和生物学功能在进化过程中高度保守。Hippo信号通路在胚胎发育中对细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用。同时,Hippo信号通路与Wnt信号通路、Notch信号通路等相互作用、密切联系,在肿瘤的发生、发展过程中也起到关键作用。文章综述了哺乳动物Hippo信号通路的作用机理、与其他信号通路和蛋白质因子的相互联系及与肿瘤的关系,对于肿瘤的诊断、预防和治疗具有一定的参考价值。  相似文献   

18.
19.
孙书国  吴世安  张雷 《遗传》2017,39(7):537-545
Hippo信号通路的发现是利用果蝇遗传学研究重大生物学问题的又一里程碑式的贡献。大量研究表明,Hippo信号通路像早期发现的其他信号通路一样,也在众多的生理与病理过程中扮演着关键角色,如控制器官尺寸和癌症发生。迄今为止,Hippo信号通路的研究过程主要经历了3个阶段:第一,Hippo信号通路的遗传学发现及其核心因子的筛选与鉴定;第二,Hippo信号通路的调控机制研究;第三,Hippo信号通路的多样性生理学功能。现阶段正是研究Hippo信号通路的上游调控和各种功能的阶段,如细胞骨架、机械张力、营养的调控,功能涉及细胞增殖调控、干细胞生物学和免疫等方面。本文按时间顺序综述了在果蝇遗传学研究中Hippo信号通路的发现与扩展过程,并对未来的研究方向进行了展望。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号