首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In normal human fibroblasts, beta-carotene induces a cell-cycle delay in the G1 phase independent of its provitamin A activity via a mechanism not yet elucidated. In this study we provide biochemical evidence showing that delayed progression through the G1 phase occurs concomitantly with: an increase in both nuclear-bound and total p21waf1/cip1 protein levels; an increase in the amount of p21waf1/cip1 associated with cdk4; the inhibition of cyclin D1-associated cdk4 kinase activity; and a reduction in the levels of hyperphosphorylated forms of retinoblastoma protein, and particularly, in phosphorylated Ser780. The role of p21waf1/cip1 in the antiproliferative effect of the carotenoid was further supported by genetic evidence that neither changes in cell-cycle progression nor in the phosphorylation status of retinoblastoma protein were observed in p21waf1/cip1-deficient human fibroblasts treated with beta-carotene. These results clearly demonstrate that p21waf1/cip1 is involved directly in the molecular pathway by which beta-carotene inhibits cell-cycle progression.  相似文献   

3.
Intracellular signaling by the second messenger Ca2+ through its receptor calmodulin (CaM) regulates cell function via the activation of CaM-dependent enzymes. Previous studies have shown that cell cycle progression at G1/S and G2/M is sensitive to intracellular CaM levels. However, little is known about the CaM-regulated enzymes involved. Protein phosphorylation has been shown to be important for cell-cycle regulation. Because CaM regulates several protein kinases, and at least one protein phosphatase, our studies are focusing on the roles of these enzymes within the cell cycle. As an initial approach to this problem, cDNAs encoding either normal or mutant calcium/calmodulin kinase II (CaMKII) have been expressed in Schizosaccharomyces pombe. The results show that overexpression of a constitutively active mutant CaMKII caused cell-cycle arrest in G2. Arrest was associated with a failure to activate the p34/cdc2 protein kinase. Expression of the mutant CaMKII in strains of S. pombe with altered timing of mitosis revealed that this effect is not mediated either by cdc25+ or wee1+, suggesting that CaMKII may regulate G2/M progression by another mechanism.  相似文献   

4.
Studies of brain-specific kinase 2 (BRSK2), an AMP-activated protein kinase (AMPK)-related kinase, and its homologs suggest that they are multifunctional regulators of cell-cycle progression. BRSK2, which contains a ubiquitin-associated (UBA) domain, is polyubiquitinated in cells. However, the regulatory mechanisms and exact biological function of BRSK2 remain unclear. Herein, we show that BRSK2 co-localizes with the centrosomes during mitosis. We also demonstrate that BRSK2 protein levels fluctuate during the cell cycle, peaking during mitosis and declining in G1 phase. Furthermore, Cdh1, rather than Cdc20, promotes the degradation of BRSK2 in vivo. Consistent with this finding, knock-down of endogenous Cdh1 blocks BRSK2 degradation during the G1 phase. The conserved KEN box of BRSK2 is required for anaphase-promoting complex/cyclosome-Cdh1 (APC/CCdh1)-dependent degradation. Additionally, overexpression of either BRSK2(WT) or BRSK2(ΔKEN) increases the percentage of cells in G2/M. Thus, our results provide the first evidence that BRSK2 regulates cell-cycle progression controlled by APC/CCdh1 through the ubiquitin-proteasome pathway.  相似文献   

5.
6.
Cigarette smoke could induce pulmonary smooth muscle cells (PASMCs) proliferation. Although our previous study had implied the involvement of protein kinase Cα (PKCα), the molecular mechanism underlying PKCα pathway in this process is still unknown. In this study, rat PASMCs were stimulated by cigarette smoke extract (CSE) or PMA (a special activator to PKCα). Two percent CSE and PMA significantly enhanced cyclin D1 expression and cells proliferation. But cyclin D1-specific siRNA successfully inhibited DNA synthesis in CSE-treated or PMA-treated cells. On the other hand, PKCα-specific siRNA significantly suppressed cyclin D1 expression in CSE-treated cells. Moreover, PKCα-specific siRNA resulted in a cell-cycle arrest in G0/G1 and decreased cells number significantly. We conclude that CSE induced rat PASMCs proliferation at least partly via PKCα-mediated cyclin D1 expression.  相似文献   

7.
Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies (LB) in neurons. α-Synuclein (αSyn) is a major component of LB and promote the PD pathogenesis via its accumulation by the impaired proteasomal or autophagic clearance. Numerous studies have revealed that the reduction of proteasome activity and autophagy is accelerated by cellular senescence. Leucine-rich repeat kinase 2 (LRRK2) contributes to PD progression and its most prevalent mutation, G2019S LRRK2, increases its activity. Our previous report has shown that the G2019S LRRK2 mutant promoted p53-induced p21 expression and neuronal cytotoxicity. The p53-p21 pathway plays a role in cellular senescence. We hypothesized that the loss of dopaminergic neurons by the stimulated p53-p21 pathway via the G2019S LRRK2 mutation might be associated with cellular senescence, thereby promoting the accumulation of αSyn. We confirmed that the ectopic expression of the phosphomimetic p53 mutant, p21, or G2019 in differentiated SH-SY5Y cells increased the following: 1) the expression of β-galactosidase, a marker of cellular senescence, and the activity of senescence-associated β-galactosidase, 2) endogenous αSyn protein level, but not its mRNA level, and 3) αSyn fibril accumulation in dSH-SY5Y via low proteasome and cathepsin D activities. Elevated oligomeric αSyn and the increase in β-galactosidase with induced p21 were observed in brain lysates of G2019S transgenic mice. Our results suggest that cellular senescence is promoted via the p53-p21 pathway due to the G2019S LRRK2 mutation. Eventually, decreased protein degradation by G2019S-mediated senescence could accelerate αSyn aggregate formation.  相似文献   

8.
9.
There is increasing evidence that proteins normally involved in the cell cycle play a role in the regulation of neuronal apoptotic death following various insults. However, it is not clear if the same mechanisms regulate cell death of oligodendrocytes as well. In this study, we investigated the mechanism of ceramide-induced apoptosis in primary rat oligodendrocytes. We show that ceramide treatment initiates a cascade of biochemical events involving cell cycle regulatory proteins. Although at the time of induction of cell death the oligodendrocytes are postmitotic, activation of c-myc and translocation of Cdc25A into the nucleus can be demonstrated. Of particular interest are the findings of the up-regulation of PCNA and down-regulation of p21WAF1/CIP1 protein, an inhibitor of cell-cycle progression. The current results show that activation of regulatory cell-cycle proteins at the oligodendrocytes G1-S checkpoint may constitute a crucial step of the death pathway of oligodendrocytes.  相似文献   

10.
Many important cellular processes like cell cycle are regulated by selective degradation of short-lived cellular proteins via the ubiquitin-proteasome pathway. Deregulation in degradation of any of these controlling molecules can lead to abnormalities like malignancies, neurodegenerative disorders, etc. Research on effects of exogenously added Ubiquitin (Ub) on cell cycle has been lacking. This report describes the effects of exogenously added Ub on the growth of Schizosaccharomyces pombe cells. Addition of Ub was found to cause inhibition in growth of cells. In temperature sensitive cell division cycle mutant, which exhibits arrest at the G2 phase, the exogenously added Ub affected the cell-cycle arrest. Addition of Lactacystin, an inhibitor of the proteasome degradation pathway, abolished the effects of externally added Ub. A proposal has been made on the mechanism through which externally added Ub may exert its effects on cells.  相似文献   

11.
Cell cycle-dependent activation of Ras   总被引:1,自引:0,他引:1  
Background Ras proteins play an essential role in the transduction of signals from a wide range of cell-surface receptors to the nucleus. These signals may promote cellular proliferation or differentiation, depending on the cell background. It is well established that Ras plays an important role in the transduction of mitogenic signals from activated growth-factor receptors, leading to cell-cycle entry. However, important questions remain as to whether Ras controls signalling events during cell-cycle progression and, if so, at which point in the cell-cycle it is activated.Results To address these questions we have developed a novel, functional assay for the detection of cellular activated Ras. Using this assay, we found that Ras was activated in HeLa cells, following release from mitosis, and in NIH 3T3 fibroblasts, following serum-stimulated cell-cycle entry. In each case, peak Ras activation occurred in mid-G1 phase. Ras activation in HeLa cells at mid-G1 phase was dependent on RNA and protein synthesis and was not associated with tyrosine phosphorylation of Shc proteins and their binding to Grb2. Significantly, activation of Ras and the extracellular-signal regulated (ERK) subgroup of mitogen-activated protein kinases were not temporally correlated during G1-phase progression.Conclusions Activation of Ras during mid-G1 phase appears to differ in many respects from its rapid activation by growth factors, suggesting a novel mechanism of regulation that may be intrinsic to cell-cycle progression. Furthermore, the temporal dissociation between Ras and ERK activation suggests that Ras targets alternate effector pathways during G1-phase progression.  相似文献   

12.
13.
Activation of stress-activated protein kinases (SAPKs) is essential for proper cell adaptation to extracellular stimuli. The exposure of yeast cells to high osmolarity, or mutations that lead to activation of the Hog1 SAPK, result in cell-cycle arrest. The mechanisms by which Hog1 and SAPKs in general regulate cell-cycle progression are not completely understood. Here we show that Hog1 regulates cell cycle progression at the G1 phase by a dual mechanism that involves downregulation of cyclin expression and direct targeting of the CDK-inhibitor protein Sic1. Hog1 interacts physically with Sic1 in vivo and in vitro, and phosphorylates a single residue at the carboxyl terminus of Sic1, which, in combination with the downregulation of cyclin expression, results in Sic1 stabilization and inhibition of cell-cycle progression. Cells lacking Sic1 or containing a Sic1 allele mutated in the Hog1 phosphorylation site are unable to arrest at G1 phase after Hog1 activation, and become sensitive to osmostress. Together, our data indicate that the Sic1 CDK-inhibitor is the molecular target for the SAPK Hog1 that is required to modulate cell-cycle progression in response to stress.  相似文献   

14.
The cyclin-dependent kinase (CDK) inhibitor p27(Kip1) (p27) is an important regulator of cell cycle progression controlling the transition from G to S-phase. Low p27 levels or accelerated p27 degradation correlate with excessive cell proliferation and poor prognosis in several forms of cancer. Phosphorylation of p27 at Thr187 by cyclin E-CDK2 is required to initiate the ubiquitination-proteasomal degradation of p27. Protecting p27 from ubiquitin-mediated proteasomal degradation may increase its potential in cancer gene therapy. Here we constructed a non-phosphorylatable, proteolysis-resistant p27 mutant containing a Thr187-to-Ala substitution (T187A) which is not degraded by ubiquitin-mediated proteasome pathway, and compared its effects on cell growth, cell-cycle control, and apoptosis with those of wild-type p27. In muristerone A-inducible cell lines overexpressing wild-type or mutant p27, the p27 mutant was more resistant to proteolysis in vivo and more potent in inducing cell-cycle arrest and other growth-inhibitory effects such as apoptosis. Transduction of p27(T187A) in breast cancer cells with a doxycycline-regulated adenovirus led to greater inhibition of proliferation, more extensive apoptosis, with a markedly reduced protein levels of cyclin E and increased accumulation of cyclin D1, compared with wild-type p27. These findings support the potential effectiveness of a degradation-resistant form of p27 in breast cancer gene therapy.  相似文献   

15.
Timely progression into mitosis is necessary for normal cell division. This transition is sensitive to the levels of cyclin B, the regulatory subunit of the master mitotic kinase, Cdk1. Cyclin B accumulates during G2 and prophase when its rate of destruction by the anaphase promoting complex (APC) is low. Securin is also an APC substrate and is known for its role in inactivating the cohesin-cleaving enzyme, separase, until the metaphase to anaphase transition. Here we show that securin has an additional role in cell-cycle regulation, that of modulating the timing of entry into M-phase. In mouse oocytes, excess securin caused stabilization of cyclin B and precocious entry into M-phase. Depletion of securin increased cyclin B degradation, resulting in delayed progression into M-phase. This effect required APC activity and was reversed by expression of wild-type securin. These data reveal a role for securin at the G2-M transition and suggest a more general mechanism whereby physiological levels of co-competing APC substrates function in modulating the timing of cell-cycle transitions.  相似文献   

16.
Cell cycle progression through its regulatory control by changes in intracellular Ca2 + levels at the G1/S transition mediates cellular proliferation and viability. Ca2 +/CaM-dependent kinase 1 (CaMKI) appears critical in regulating the assembly of the cyclin D1/cdk4 complex essential for G1 progression, but how this occurs is unknown. Cyclin D1/cdk4 assembly in the early G1 phase is also regulated via binding to p27. Here, we show that a ubiquitin E3 ligase component, F-box protein Fbxl12, mediates CaMKI degradation via a proteasome-directed pathway leading to disruption of cyclin D1/cdk4 complex assembly and resultant G1 arrest in lung epithelia. We also demonstrate that i) CaMKI phosphorylates p27 at Thr157 and Thr198 in human cells and at Thr170 and Thr197 in mouse cells to modulate its subcellular localization; ii) Fbxl12-induced CaMKI degradation attenuates p27 phosphorylation at these sites in early G1 and iii) activation of CaMKI during G1 transition followed by p27 phosphorylation appears to be upstream to other p27 phosphorylation events, an effect abrogated by Fbxl12 overexpression. Lastly, known inducers of G1 arrest significantly increase Fbxl12 levels in cells. Thus, Fbxl12 may be a previously uncharacterized, functional growth inhibitor regulating cell cycle progression that might be used for mechanism-based therapy.  相似文献   

17.
18.
Flap endonuclease 1 (FEN1) is a central component of Okazaki fragment maturation in eukaryotes. Genetic analysis of Saccharomyces cerevisiae FEN1 (RAD27) also reveals its important role in preventing trinucleotide repeat (TNR) expansion. In humans such expansion is associated with neurodegenerative diseases. In vitro, FEN1 can inhibit TNR expansion by employing its endonuclease activity to compete with DNA ligase I. Here we employed two yeast FEN1 nuclease mutants, rad27-G67S and rad27-G240D, to further define the mechanism by which FEN1 prevents TNR expansion. Using a yeast artificial chromosome system that can detect both TNR instability and fragility, we demonstrate that the G240D but not the G67S mutation increases both the expansion and fragility of a CTG tract in vivo. In vitro, the G240D nuclease is proficient in cleaving a fixed nonrepeat double flap; however, it exhibits severely impaired cleavage of both nonrepeat and CTG-containing equilibrating flaps. In contrast, wild-type FEN1 and the G67S mutant exhibit more efficient cleavage on an equilibrating flap than on a fixed CTG flap. The degree of TNR expansion and the amount of chromosome fragility observed in the mutant strains correlate with the severity of defective flap cleavage in vitro. We present a model to explain how flap equilibration and the unique tracking mechanism of FEN1 can collaborate to remove TNR flaps and prevent repeat expansion.  相似文献   

19.
The expression of human thymidine kinase 1 (hTK1) is highly dependent on the growth states and cell cycle stages in mammalian cells. The amount of hTK1 is significantly increased in the cells during progression to the S and M phases, and becomes barely detectable in the early G(1) phase by a proteolytic control during mitotic exit. This tight regulation is important for providing the correct pool of dTTP for DNA synthesis at the right time in the cell cycle. Here, we investigated the mechanism responsible for mitotic degradation of hTK1. We show that hTK1 is degraded via a ubiquitin-proteasome pathway in mammalian cells and that anaphase-promoting complex/cyclosome (APC/C) activator Cdh1 is not only a necessary but also a rate-limiting factor for mitotic degradation of hTK1. Furthermore, a KEN box sequence located in the C-terminal region of hTK1 is required for its mitotic degradation and interaction capability with Cdh1. By in vitro ubiquitinylation assays, we demonstrated that hTK1 is targeted for degradation by the APC/C-Cdh1 ubiquitin ligase dependent on this KEN box motif. Taken together, we concluded that activation of the APC/C-Cdh1 complex during mitotic exit controls timing of hTK1 destruction, thus effectively minimizing dTTP formation from the salvage pathway in the early G(1) phase of the cell cycle in mammalian cells.  相似文献   

20.
The Cdc25 dual-specificity phosphatases control progression through the eukaryotic cell division cycle by activating cyclin-dependent kinases. Cdc25 A regulates entry into S-phase by dephosphorylating Cdk2, it cooperates with activated oncogenes in inducing transformation and is overexpressed in several human tumors. DNA damage or DNA replication blocks induce phosphorylation of Cdc25 A and its subsequent degradation via the ubiquitin-proteasome pathway. Here we have investigated the regulation of Cdc25 A in the cell cycle. We found that Cdc25 A degradation during mitotic exit and in early G(1) is mediated by the anaphase-promoting complex or cyclosome (APC/C)(Cdh1) ligase, and that a KEN-box motif in the N-terminus of the protein is required for its targeted degradation. Interestingly, the KEN-box mutated protein remains unstable in interphase and upon ionizing radiation exposure. Moreover, SCF (Skp1/Cullin/F-box) inactivation using an interfering Cul1 mutant accumulates and stabilizes Cdc25 A. The presence of Cul1 and Skp1 in Cdc25 A immunocomplexes suggests a direct involvement of SCF in Cdc25 A degradation during interphase. We propose that a dual mechanism of regulated degradation allows for fine tuning of Cdc25 A abundance in response to cell environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号