首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summarized results of the experiments (conducted in 1981-1984) demonstrate seasonal rhythms of some behavioural effects (catalepsy and depression of locomotor activity) of haloperidol (0.5 mg/kg) and levomepromazine (5 mg/kg) in white rats. In intact rats neuroleptics were more effective in depressing high than low motor activity. Catalepsy induced by single administration of neuroleptics was more pronounced in spring and autumn months. A certain negative correlation exists between seasonal variations of neuroleptic catalepsy and the speed of monoamine (dopamine and serotonin) metabolism in the brain of intact rats.  相似文献   

2.
Classical antipsychotics can produce motor disturbances like tardive dyskinesia in humans and orofacial dyskinesia in rodents. These motor side effects have been associated with oxidative stress production in specific brain areas. Thus, some studies have proposed the use of natural compounds with antioxidant properties against involuntary movements induced by antipsychotics. Here, we examined the possible antioxidant activity of Bauhinia forficata (B. forficata), a plant used in folk medicine as a hypoglycemic, on brain lipid peroxidation induced by different pro-oxidants. B. forficata prevented the formation of lipid peroxidation induced by both pro-oxidants tested. However, it was effective against lipid peroxidation induced by sodium nitroprusside (IC50 = 12.08 μg/mL) and Fe2+/EDTA (IC50 = 41.19 μg/mL). Moreover, the effects of B. forficata were analyzed on an animal model of orofacial dyskinesia induced by long-term treatment with haloperidol, where rats received haloperidol each 28 days (38 mg/kg) and/or B. forficata decoction daily (2.5 g/L) for 16 weeks. Vacuous chewing movements (VCMs), locomotor and exploratory activities were evaluated. Haloperidol treatment induced VCMs, and co-treatment with B. forficata partially prevented this effect. Haloperidol reduced the locomotor and exploratory activities of animals in the open field test, which was not modified by B. forficata treatment. Our present data showed that B. forficata has antioxidant potential and partially protects against VCMs induced by haloperidol in rats. Taken together, our data suggest the protection by natural compounds against VCMs induced by haloperidol in rats.  相似文献   

3.
Locomotor activity and grooming behavior of rats were recorded for a period of 30 min following intraventricular injections of substance P(SP) in doses of 0.60 and 2.50 microgram/rat. The lower dose of the peptide significantly increased locomotion for 10 min and time spent grooming for 25 min. The effects of the same two doses of SP on the hypokinesia induced by various pharmacological treatments modifying catecholaminergic systems were then examined. SP did not affect the behavioral depression produced by alpha-methyl-para-tyrosine (250 mg/kg), FLA-63 (25 mg/kg) and phenoxybenzamine (20 mg/kg). However, SP, in dose of 0.60 microgram/rat, systematically reversed the decrease in locomotor activity induced by a relatively small dose of haloperidol, 0.1 mg/kg. The dame dose of the peptide significantly counteracted the rigidity but not the hypokinesia and catalepsy resulting from the previous administration of a higher dose of haloperidol, 3 mg/kg. The results support the hypothesis that SP may exert direct or indirect function in motor behavior, possible via a modulatory action on brain dopaminergic systems.  相似文献   

4.
An important goal of current neuroleptic research is to develop antipsychotic compounds with the low incidence of extrapyramidal side effects. The therapeutic success and less side-effect of atypical anti-psychotics such as clozapine and risperidone has focused the attention on the role of receptor systems other than dopaminergic system in the pathophysiology of neuroleptics-associated extrapyramidal side effects. The present study compares the effect of chronic administration of typical and atypical antipsychotics on neurochemical profile in rat forebrain. The study was planned to study changes in extracellular levels of norepinephrine, dopamine and serotonin in forebrain region of brain and tried to correlate them with hyperkinetic motor activities (vacuous chewing movements (VCM's), tongue protrusions and facial jerking) in rats, hall mark of chronic extrapyramidal side-effect of neuroleptic therapy tardive dyskinesia. Chronic administration of haloperidol (1 mg/kg) and chlorpromazine (5 mg/kg) resulted in significant increase in orofacial hyperkinetic movements where as clozapine and risperidone showed less significant increase in orofacial hyperkinetic movements as compared to control. There were also significant decrease in the extracellular levels of neurotransmitters dopamine, norepinephrine and serotonin in fore-brain as measured by HPLC/ED after chronic administration of haloperidol and chlorpromazine. Chronic administration of atypical neuroleptics clozapine and risperidone resulted in the decrease in extracellular concentration of dopamine and norepinephrine but the effect was less significant as compared to typical drugs. However, treatment with atypical neuroleptics resulted in 3 fold increase in serotonin levels as compared to forebrain of control rats. Typical and atypical neuroleptics showed varying effects on neurotransmitters, especially serotonin which may account for the difference in their profile of side effects (Tardive dyskinesia).  相似文献   

5.
Haloperidol, a dopamine D2 receptor blocker, is a classical neuroleptic drug that elicits extrapyramidal symptoms. Its metabolites include 3-(4-fluorobenzoyl) propionic acid (FBPA) and 4-(4-chlorophenyl)-4-piperidinol (CPHP). Until now, the biological significance of these metabolites has remained largely unknown. Here, we report that the administration of FBPA to mice effected a suppression of locomotor activity and induced catalepsy in a manner similar to that observed with haloperidol, whereas CPHP had no significant effects. Neither of these two metabolites, however, exhibited any ability to bind to the dopamine D2 receptor. FBPA blocked dopamine-induced extracellular signal-regulated kinase 1/2 phosphorylation, and it specifically affected mitogen-activated protein kinase kinase (MEK)1/2 activity in hippocampal HN33 cells. Moreover, FBPA was capable of direct interaction with MEK1/2, and inhibited its activity in vitro. We demonstrated the generation of haloperidol metabolites within haloperidol-treated cells by mass spectrometric analyses. Collectively, our results confirm the biological activity of FBPA, and provide initial clues as to the receptor-independent role of haloperidol.  相似文献   

6.
The present work studied the effects of dopaminergic and muscarinic receptor agonists and antagonists on rat locomotor activity and catalepsy. Results showed that carbachol at the highest dose used (10 mg/kg, p.o.) decreased and pimozide at the dose used abolished locomotor activity. Atropine at a low dose (1 mg/kg, p.o.) increased and at a high dose decreased this parameter. Mazindol at a high dose also increased locomotor activity. A significant and dose-dependent increase in the time on the bar was observed in animals treated with carbachol or pimozide as compared to controls. The increase observed with pimozide was greater than 60 s. Effects of carbachol on locomotor activity were observed already after the first drug exposure, but the increased time on bar produced by this drug in the test of catalepsy was observed only after repeated exposure (7th day). The effect of the highest dose (10 mg/kg, p.o.) of atropine (decreased activity) as related to the lowest one was evident at the 7th day, but the increased locomotor activity seen at the low dose was detected already at the first day. There was a predominance of the effect of pimozide on the open field as well as on catalepsy after its association with each one of the three doses of carbachol. The association of atropine and mazindol did not seem to alter locomotor activity and catalepsy as related to each drug alone. Our results indicate that interactions between dopaminergic and cholinergic systems play an important role on behavior and motor functions.  相似文献   

7.
The present work shows the effects of a typical neuroleptic drug (haloperidol, HAL) on rat behavior (catalepsy and locomotor activity) and dopaminergic D2-like receptor densities in the hippocampus and striatum. Male Wistar rats (2-3 months old) were treated daily for 30 days with HAL (0.2 or 1mg/kg, intraperitoneally (i.p.)). At the end of treatment and 1h or 1, 3, 7 and 15 days after drug withdrawal, animals were subjected to behavioral tests and sacrificed afterwards for binding assays. The results showed that behavioral effects with both doses were significant only 1h and 1 day after withdrawal, and similar to controls at the third day. An up-regulation of D2 receptors was observed in the striatum (28% increase) but not in the hippocampus after 24h HAL (1mg/kg) withdrawal. However, an up-regulation was seen in both areas (1mg/kg) 3 days after drug withdrawal (58 and 42% increases in the hippocampus and striatum, respectively), and continued after 7 days of withdrawal only in the striatum (43 and 49% for the doses of 0.2 and 1mg/kg, respectively), suggesting the influence of dose, age, and time of drug withdrawal on these parameters. The up-regulation disappeared after 15 days of haloperidol withdrawal. Increases (72 and 140%) in constant dissociation values (K(d)) values were also observed 7 days after withdrawal. Results show differences on a time-basis between behavioral alterations and dopaminergic D2 receptors up-regulation.  相似文献   

8.
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The events, which trigger and/or mediate the loss of nigral DA neurons, however, remain unclear. Neuroleptic-induced catalepsy has long been used as an animal model for screening drugs for Parkinsonism. Administration of haloperidol (1 mg/kg, ip) or reserpine (2 mg/kg, ip) significantly induced catalepsy in mice. BR-16A (50 and 100 mg/kg, po), a polyherbal formulation or ashwagandha (50 and 100 mg/kg, po), significantly reversed the haloperidol or reserpine-induced catalepsy. The results indicate that BR-16A or ashwagandha has protective effect against haloperidol or reserpine-induced catalepsy and provide hope that BR-16A could be used in preventing the drug-induced extrapyramidal side effects and may offer a new therapeutic approach to the treatment of Parkinson's disease.  相似文献   

9.
The experiments presented in this paper aimed to investigate the influence of atypical antiepileptic drug carbamazepine (CBZ, CAS 298-46-4) classified also as normothymic drug on spatial memory in Morris water maze test and anxiolytic effect in two-compartment exploratory test in rats. The study also investigated the probably occurring side effects (measuring cataleptic activity and motor coordination) following single and chronic administration of CBZ compared to haloperidol (HAL, CAS 52-86-8), a conventional antipsychotic. All the tests were carried out on male Wistar rats. CBZ 30 mg/kg was administered orally 60 min before the tests and HAL 0.15 mg/kg was administered orally 60 min before the tests. In the Morris test memory improvement only after chronic administration of CBZ on the 7 and 14 day of treatment was observed, whereas after 14 days of HAL treatment spatial memory impairment was noted. In the two-compartment exploratory test 30 mg/kg of CBZ had an anxiolytic effect after 7 and 14 days of treatment, whereas HAL did not show anxiolytic effect after single and chronic treatment. CBZ did not induce catalepsy after single as well as chronic administration. HAL evoked a strong cataleptic effect both after acute and chronic treatment. CBZ had no impact on motor coordination in the chimney test and HAL disturbed motor coordination in rats after single as well as chronic administration. CBZ may be an useful normothymic drug using in bipolar affective disorder treatment with co-occurred anxiety and cognitive deficits. The lack of significant side effects of CBZ may be an alternative way of treatment in comparison with older drugs, such as lithium carbonate.  相似文献   

10.
Antipsychotics are established drugs in schizophrenia treatment which, however, are not free of side effects. Lipid rafts are critical for normal brain function. Several G protein-coupled receptors, such as somatostatin (SRIF) receptors, have been shown to localize to lipid rafts. The aim of this study was to investigate whether haloperidol treatment affects the composition and functionality of lipid rafts in SH-SY5Y neuroblastoma cells. Haloperidol inhibited cholesterol biosynthesis, leading to a marked reduction in cell cholesterol content and to an accumulation of sterol intermediates, particularly cholesta-8,14-dien-3β-ol. These changes were accompanied by a loss of flotillin-1 and Fyn from the lipid rafts. We next studied the functionality of the SRIF receptor. Treatment with haloperidol reduced the inhibitory effect of SRIF on adenylyl cyclase (AC) activity. On the other side, haloperidol decreased basal AC activity but increased forskolin-stimulated AC activity. Addition of free cholesterol to the culture medium abrogated the effects of haloperidol on lipid raft composition and SRIF signaling whereas the AC response to forskolin remained elevated. The results show that haloperidol, by affecting cholesterol homeostasis, ultimately alters SRIF signaling and AC activity, which might have physiological consequences.  相似文献   

11.
Haloperidol is a classical neuroleptic drug that is still in use and can lead to abnormal motor activity such as tardive dyskinesia (TD) following repeated administration. TD has no effective therapy yet. There is involvement of calcium in triggering the oxidative damage and excitotoxicity, both of which play central role in haloperidol-induced orofacial dyskinesia and associated alterations. The present study was carried out to investigate the protective effect of calcium channel blockers [verapamil (10 and 20 mg/kg), diltiazem (10 and 20 mg/kg), nifedipine (10 and 20 mg/kg) and nimodipine (10 and 20 mg/kg)] against haloperidol induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical alterations in rats. Chronic administration of haloperidol (1 mg/kg i.p., 21 days) resulted in a significant increase in orofacial dyskinetic movements and significant decrease in % retention, coupled with the marked increase in lipid peroxidation and superoxide anion generation where as significant decrease in non protein thiols and endogenous antioxidant enzyme (SOD and catalase) levels in rat brain striatum homogenates. All these deleterious effects of haloperidol were significantly attenuated by co-administration of different calcium channel blockers. Neurochemically, chronic administration of haloperidol resulted in significant decrease in levels of catecholamines (dopamine, serotonin) and their metabolites (HVA and HIAA) but increased turnover of dopamine and serotonin. Co-administration of most effective doses of verapamil, diltiazem, nifedipine and nimodipine significantly attenuated these neurochemical changes. Results of the present study indicate that haloperidol-induced calcium ion influx is involved in the pathogenesis of tardive dyskinesia and calcium channel blockers should be tested in clinical trials with nifedipine as the most promising one.  相似文献   

12.
目的:利用氟哌啶醇致僵直大鼠模拟帕金森病(PD)的运动不能,通过高频电刺激下丘脑后核(PH),观察大鼠僵直和运动能力的变化,从而探讨PH在PD治疗中潜在的应用价值。方法:将成年雄性SD大鼠随机分为PH刺激组、假刺激组和对照组,对PH刺激组和假刺激组大鼠双侧PH置入双极刺激电极,腹腔注射氟哌啶醇30min后,PH刺激组给予持续高频电刺激(130Hz,60μs,100μA),分别利用爬杆实验和跑步机实验评价大鼠僵直程度和运动能力。结果:腹腔注射氟哌啶醇1.0mg/kg后,①大鼠呈僵直状态,其潜伏期为167.88±17.88S,给予双侧PH高频电刺激后潜伏期显著缩短至77.5±21.27s(P〈0.01)。②跑步机试验显示大鼠跑动速度和跑动距离显著下降,分别为5.78±0.90cm/s和8.06±4.35m(P〈0.01),给予双侧PH高频电刺激后显著提高跑动速度和跑动距离,分别为12.72±3.66cm/s和98.61±96.75m(P〈0.01)。结论:腹腔注射氟哌啶醇可模拟帕金森病的僵直和运动不能症状,双侧高频电刺激PH可显著拮抗氟哌啶醇对大鼠僵直和运动不能的作用,提示PH为DBS治疗帕金森病运动不能的有效刺激靶点,为临床DBS刺激PH治疗PD提供实验依据。  相似文献   

13.
Role of Nitric Oxide on Motor Behavior   总被引:8,自引:0,他引:8  
The present review paper describes results indicating the influence of nitric oxide (NO) on motor control. Our last studies showed that systemic injections of low doses of inhibitors of NO synthase (NOS), the enzyme responsible for NO formation, induce anxiolytic effects in the elevated plus maze whereas higher doses decrease maze exploration. Also, NOS inhibitors decrease locomotion and rearing in an open field arena.These results may involve motor effects of this compounds, since inhibitors of NOS, NG-nitro-L-arginine (L-NOARG), NG-nitro-L-arginine methylester (L-NAME), NG-monomethyl-L-arginine (L-NMMA), and 7-Nitroindazole (7-NIO), induced catalepsy in mice. This effect was also found in rats after systemic, intracebroventricular or intrastriatal administration.Acute administration of L-NOARG has an additive cataleptic effect with haloperidol, a dopamine D2 antagonist. The catalepsy is also potentiated by WAY 100135 (5-HT1a receptor antagonist), ketanserin (5HT2a and alfa1 adrenergic receptor antagonist), and ritanserin (5-HT2a and 5HT2c receptor antagonist). Atropine sulfate and biperiden, antimuscarinic drugs, block L-NOARG-induced catalepsy in mice.L-NOARG subchronic administration in mice induces rapid tolerance (3 days) to its cataleptic effects. It also produces cross-tolerance to haloperidol-induced catalepsy. After subchronic L-NOARG treatment there is an increase in the density NADPH-d positive neurons in the dorsal part of nucleus caudate-putamen, nucleus accumbens, and tegmental pedunculupontinus nucleus. In contrast, this treatment decreases NADPH-d neuronal number in the substantia nigra compacta.Considering these results we suggest that (i) NO may modulate motor behavior, probably by interfering with dopaminergic, serotonergic, and cholinergic neurotransmission in the striatum; (ii) Subchronic NO synthesis inhibition induces plastic changes in NO-producing neurons in brain areas related to motor control and causes cross-tolerance to the cataleptic effect of haloperidol, raising the possibility that such treatments could decrease motor side effects associated with antipsychotic medications.Finally, recent studies using experimental Parkinsons disease models suggest an interaction between NO system and neurodegenerative processes in the nigrostriatal pathway. It provides evidence of a protective role of NO. Together, our results indicate that NO may be a key participant on physiological and pathophysiological processes in the nigrostriatal system.  相似文献   

14.
Reserpine-induced orofacial dyskinesia is a model that shares some mechanists’ aspects with tardive dyskinesia whose pathophysiology has been related to oxidative stress. The present study was aimed to explore neuroprotective effects of nebivolol, an antihypertensive agent, on reserpine-induced neurobehavioral and biochemical alterations in rats. Reserpine (1 mg/kg, s.c.) was used to induce neurotoxicity. Administration of reserpine for 3 days every other day significantly increased the vacuous chewing movements (VCMs), tongue protrusions (TPs) and reduced the locomotor activity in rats. Pre-treatment with nebivolol (5 and 10 mg/kg, p.o. for 5 days) showed dose dependant decrease in VCMs and TP induced by reserpine. Nebivolol also showed significant improvement in locomotor activity. Reserpine significantly increased lipid peroxidation and reduced the levels of defensive antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and reduced glutathione (GSH) in rat brain. Nebivolol reversed these effects of reserpine on oxidative stress indices; indicating amelioration of oxidative stress in rat brains. The results of the present study indicated that nebivolol has a protective role against reserpine-induced orofacial dyskinesia. Thus, the use of nebivolol as a therapeutic agent for the treatment of tardive dyskinesia may be considered.  相似文献   

15.
Atypical antipsychotic properties of 4-(4-fluorobenzylidene)-1-[2-[5-(4-fluorophenyl)-1H-pyrazol-4-yl]ethyl] piperidine (NRA0161) were investigated by in vitro receptor affinities, in vivo receptor occupancies and findings were compared with those of risperidone and haloperidol in rodent behavioral studies. In in vitro receptor binding studies, NRA0161 has a high affinity for human cloned dopamine D(4) and 5-HT(2A) receptor with Ki values of 1.00 and 2.52 nM, respectively. NRA0161 had a relatively high affinity for the alpha(1) adrenoceptor (Ki; 10.44 nM) and a low affinity for the dopamine D(2) receptor (Ki; 95.80 nM). In in vivo receptor binding studies, NRA0161 highly occupied the 5-HT(2A) receptor in rat frontal cortex. In contrast, NRA0161 did not occupy the striatal D(2) receptor. In behavioral studies, NRA0161, risperidone and haloperidol antagonized the locomotor hyperactivity in mice, as induced by methamphetamine (MAP). At a higher dosage, NRA0161, risperidone and haloperidol dose-dependently antagonized the MAP-induced stereotyped behavior in mice and NRA0161 dose-dependently and significantly induced catalepsy in rats. The ED(50) value in inhibiting the MAP-induced locomotor hyperactivity was 30 times lower than that inhibiting the MAP-induced stereotyped behavior and 50 times lower than that which induced catalepsy.These findings suggest that NRA0161 may have atypical antipsychotic activities yet without producing extrapyramidal side effects.  相似文献   

16.
Antipsychotic drugs (APDs) have been primarily characterized for their effects on dopaminergic terminal regions in the brain, especially within the corpus striatum. Efferent GABA pathways are the primary outflow of striatal processing via their projections to the substantia nigra and the globus pallidus (GP). In the current study, we analyzed changes in pallidal GABA function following acute APD administration by means of in vivo microdialysis, followed by immunolabeling of presynaptic GABA terminal density in the contralateral hemisphere of the same animals. Acute administration of the atypical APD, clozapine (10 or 30 mg/kg, s.c.), produced a dose-dependent decrease in extracellular GABA. A corresponding dose-dependent increase in the density of presynaptic terminal GABA immunolabeling in the GP was found. In contrast, the typical APD, haloperidol (1 or 3 mg/kg, s.c.), had no significant effects on either measure, although a non-significant increase in extracellular GABA and decrease in the density of GABA terminal immunolabeling was noted. Paw retraction tests conducted during the time of microdialysis showed that haloperidol produced a typical pattern of highly pronounced motor impairment, while clozapine showed an atypical profile of minimal catalepsy. These complementary results obtained from in vivo neurochemistry and presynaptic neurotransmitter labeling suggest that systemic clozapine suppresses neuronal GABA release within the GP. This decrease in released pallidal GABA may play a role in the low motor side-effect liability of atypical APDs.  相似文献   

17.
N-methyl-D-aspartic acid (NMDA; 40 mg/kg, i.p.) did not elicit catalepsy, but it potentiated the cataleptic effect of haloperidol and GABAB receptor agonist, baclofen. MK-801 (0.2 mg/kg, i.p.), NMDA-receptor antagonist, reversed haloperidol- but not baclofen-induced catalepsy. MK-801 also potentiated the anticataleptic effect of scopolamine and bromocriptine against haloperidol-induced catalepsy. Dihydropyridine (DHP) calcium-channel antagonists such as nimodipine and nitrendipine (10 mg/kg, i.p.), reversed the anticataleptic effect of MK-801, and potentiated the cataleptic effect of haloperidol, as well as baclofen. These observations indicate the involvement of NMDA receptors in catalepsy, and suggest a potential clinical implication of NMDA-receptor antagonists in Parkinson's disease.  相似文献   

18.
Two groups of rats with different level of motor activities: high- and low-active animals, were distinguished. The blockade of dopamine receptors by haloperidol led to depression of locomotor activity in both groups of rats; in grape snails, haloperidol caused a decrease of the velocity of locomotor responses. In was found that within 5 minutes of intravenous injection of haloperidol the excitability of spinal centers of rats decreased; but in 30 minutes in started restoring. Chronic application of the preparation depressed the effect of posttetanic potentiation of H-response in gastrocnemius muscle of spinal rats. In command neurons of grape snail, chronic injections of haloperidol causes a significant hyperpolarization shift of membrane potential and an increase of threshold of the generation of action potential. It was shown that the selective pharmacological inhibition of dopaminergic system of the brain led to a decrease of excitability in some determined neurons of the snail and spinal motor centers of rats, as well as inhibited the locomotor responses both in vertebrate and in invertebrate animals.  相似文献   

19.
To investigate the extent of cholinergic involvement in opiate-induced catalepsy, the effects of three anticholinergic drugs were studied on morphine-induced catalepsy. Haloperidol-induced catalepsy was also examined. Maximum catalepsy in rats was obtained with 30 mg/kg morphine or 3 mg/kg haloperidol. The anticholinergic drugs atropine, benztropine, and scopolamine were unable to antagonize morphine-induced catalepsy, yet readily antagonized haloperidol-induced catalepsy. Low doses of apomorphine (7.5 mg/kg), on the other hand, readily antagonized morphine catalepsy, but 13-fold higher doses of apomorphine were needed to block haloperidol-induced catalepsy. The results are compatible with the idea that catalepsy can be mediated via the striatum or the amygdala; morphine-dopamine antagonism may occur in the amygdala, whereas morphine-dopamine-cholinergic interactions occur in the striatum.  相似文献   

20.
Wistar rats were injected with haloperidol (3.5 mg/kg) that resulted in a high level of cataplexy. Next day after haloperidol injection rat behavior was studied in the open field. The animals were divided in two groups. The first group of animals was tested in the daylight without additional illumination of the open-field chamber. The second group was tested in a darkened room with additional intense illumination of the open-field center with a 60W bulb. The testing time was 240 s. The high level of the open-field locomotor activity in the first group was attributed to anxiety. The low level of locomotor activity in the second group was qualified as depressive state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号