首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipose triglyceride lipase (ATGL) catalyzes the first step of triacylglycerol hydrolysis in adipocytes. Abhydrolase domain 5 (ABHD5) increases ATGL activity by an unknown mechanism. Prior studies have suggested that the expression of ABHD5 is limiting for lipolysis in adipocytes, as addition of recombinant ABHD5 increases in vitro TAG hydrolase activity of adipocyte lysates. To test this hypothesis in vivo, we generated transgenic mice that express 6-fold higher ABHD5 in adipose tissue relative to wild-type (WT) mice. In vivo lipolysis increased to a similar extent in ABHD5 transgenic and WT mice following an overnight fast or injection of either a β-adrenergic receptor agonist or lipopolysaccharide. Similarly, basal and β-adrenergic-stimulated lipolysis was comparable in adipocytes isolated from ABHD5 transgenic and WT mice. Although ABHD5 expression was elevated in thioglycolate-elicited macrophages from ABHD5 transgenic mice, Toll-like receptor 4 (TLR4) signaling was comparable in macrophages isolated from ABHD5 transgenic and WT mice. Overexpression of ABHD5 did not prevent the development of obesity in mice fed a high-fat diet, as shown by comparison of body weight, body fat percentage, and adipocyte hypertrophy of ABHD5 transgenic to WT mice. The expression of ABHD5 in mouse adipose tissue is not limiting for either basal or stimulated lipolysis.  相似文献   

2.
Catecholamines play an important role in controlling white adipose tissue function and development. beta- and alpha 2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte alpha 2/beta-AR balance in obesity, and it has been proposed that increased alpha 2-ARs in adipose tissue with or without decreased beta-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte alpha 2/beta-AR balance was genetically manipulated in mice. Human alpha 2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (-/-) or heterozygous (+/-) for a disrupted beta 3-AR allele. Mice expressing alpha 2-ARs in fat, in the absence of beta 3-ARs (beta 3-AR -/- background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of alpha2-ARs, the absence of beta 3-ARs, and a high fat diet. Of note, obese alpha 2-transgenic beta 3 -/- mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased alpha 2/beta-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (alpha 2 and beta 3-AR) and diet interact to influence fat mass.  相似文献   

3.
Human fat cell lipolysis was considered until recently to be an exclusive cAMP/protein-kinase A (PKA)-regulated metabolic pathway under the control of catecholamines and insulin. Moreover, exercise-induced lipid mobilization in humans was considered to mainly depend on catecholamine action and interplay between fat cell beta- and alpha2-adrenergic receptors controlling adenylyl cyclase activity and cAMP production. We have recently demonstrated that natriuretic peptides stimulate lipolysis and contribute to the regulation of lipid mobilization in humans. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) stimulate lipolysis in human isolated fat cells. Activation of the adipocyte plasma membrane type A guanylyl cyclase receptor (NPR-A), increase in intracellular guanosine 3',5'-cyclic monophosphate (cyclic GMP) levels and activation of hormone-sensitive lipase mediate the action of ANP. ANP does not modulate cAMP production and PKA activity. Increment of cGMP induces the phosphorylation of hormone-sensitive lipase and perilipin A via the activation of a cGMP dependent protein kinase-I (cGK-I). Plasma concentrations of glycerol and non-esterified fatty acids are increased by i.v. infusion of ANP in humans. Physiological relevance of the ANP-dependent pathway was demonstrated in young subjects performing physical exercise. ANP plays a role in conjunction with catecholamines in the control of exercise-induced lipid mobilization. This pathway becomes of major importance when subjects are submitted to chronic treatment with a beta-blocker. Oral beta-adrenoceptor blockade suppresses the beta-adrenergic component of catecholamine action in fat cells and potentiates exercise-induced ANP release by the heart. These findings may have several implications whenever natriuretic peptide secretion is altered such as in subjects with left ventricular dysfunction, congestive heart failure and obesity.  相似文献   

4.
The beta3-selective adrenergic receptor ligand BRL 37344 (BRL) was used to differentiate the presence and functional role of beta-adrenergic receptor (betaAR) subtypes in pig tissues. BRL did not stimulate adenylyl cyclase in membrane preparations or increase lipolysis from pig adipocytes. In contrast to some species, BRL appears to be a poor agonist for the pig betaAR and is not a useful betaAR ligand. Based on displacement of [3H]dihydroalprenolol binding, BRL exhibited a 100-fold selectivity for pig betaAR subtypes in adipose and skeletal muscle membranes. The high affinity site was proposed to be the beta2AR. When used as an antagonist, BRL blockade of the high affinity site did not interfere with isoproterenol-stimulated lipolysis but did inhibit adenylyl cyclase activation. Results indicate that the high affinity betaAR (betaAR) is not linked to lipolysis, possibly due to intracellular compartmentalization. Therefore, betaAR subtypes may have function-specific effects.  相似文献   

5.
The presence of sex differences in myocardial β-adrenergic responsiveness is controversial, and limited studies have addressed the mechanism underlying these differences. Studies were performed using isolated perfused hearts from male, intact female and ovariectomized female mice to investigate sex differences and the effects of ovarian hormone withdrawal on β-adrenergic receptor function. Female hearts exhibited blunted contractile responses to the β-adrenergic receptor agonist isoproterenol (ISO) compared with males but not ovariectomized females. There were no sex differences in β(1)-adrenergic receptor gene or protein expression. To investigate the role of adenylyl cyclase, phosphodiesterase, and the cAMP-signaling cascade in generating sex differences in the β-adrenergic contractile response, dose-response studies were performed in isolated perfused male and female hearts using forskolin, 3-isobutyl-1-methylxanthine (IBMX), and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Males showed a modestly enhanced contractile response to forskolin at 300 nM and 5 μM compared with females, but there were no sex differences in the response to IBMX or CPT-cAMP. The role of the A(1) adenosine receptor (A(1)AR) in antagonizing the β-adrenergic contractile response was investigated using both the A(1)AR agonist 2-chloro-N(6)-cyclopentyl-adenosine and A(1)AR knockout (KO) mice. Intact females showed an enhanced A(1)AR anti-adrenergic effect compared with males and ovariectomized females. The β-adrenergic contractile response was potentiated in both male and female A(1)ARKO hearts, with sex differences no longer present above 1 nM ISO. The β-adrenergic contractile response is greater in male hearts than females, and minor differences in the action of adenylyl cyclase or the A(1)AR may contribute to these sex differences.  相似文献   

6.
Catecholamine-induced lipolysis is chiefly mediated through the recently characterized beta 3-adrenergic receptor (AR) in rat adipocytes. Discrepancies between the ability of beta 3-AR agonists to stimulate adenylyl cyclase and the resulting lipolysis were recently reported. cAMP-dependent protein kinase (A-kinase) activation induced by these agonists was compared to lipolysis. Agonist potencies were similar for A-kinase activity ratios and lipolysis. The same A-kinase activity ratio to lipolysis relationship was found for the beta 3-AR agonists tested.  相似文献   

7.
β-Adrenergic receptor stimulation of adenylyl cyclase involves the activation of a GTP-binding regulatory protein (G-protein, termed here Gs). Inactivation of this G-protein is associated with the hydrolysis of bound GTP by an intrinsic high affinity GTPase activity. In the present study, we have characterized the GTPase activity in a Gs-enriched rat parotid gland membrane fraction. Two GTPase activities were resolved; a high affinity GTPase activity displaying Michaelis-Menten kinetics with increasing concentrations of GTP, and a low affinity GTPase activity which increased linearly with GTP concentrations up to 10 mM. The β-adrenergic agonist isoproterenol (10 μM) increased the Vmax of the high affinity GTPase component approx. 50% from 90 to 140 pmol/mg protein per min, but did not change its Km value (≈ 450 nM). Isoproterenol also stimulated adenylyl cyclase activity in parotid membranes both in the absence or presence of GTP. In the presence of a non-hydrolyzable GTP analogue, guanosine 5′-(3-O-thio)triphosphate (GTPγS), isoproterenol increased cAMP formation to the same extent as that observed with AlF4?. Cholera toxin treatment of parotid membranes led to the ADP-ribosylation of two proteins (≈ 45 and 51 kDa). Cholera toxin also specifically decreased the high affinity GTPase activity in membranes and increased cAMP formation induced by GTP in the absence or the presence of isoproterenol. These data demonstrate that the high affinity GTPase characterized here is the ‘turn-off’ step for the adenylyl cyclase activation seen following β-adrenergic stimulation of rat parotid glands.  相似文献   

8.
It is established that the modulation of beta(3)-adrenoceptor function could be associated with impairment of lipolysis in white fat and be responsible for disturbed lipid metabolism. Though two isoforms of nitric oxide synthase (NOS) were reported in adipocytes, the role of nitric oxide (NO) in adipose tissue is still ambiguous. The present work was directed to study the interplay between NO production and beta-adrenoceptor/cyclic AMP (cAMP) pathway on lipid mobilization (glycerol and nonesterified fatty acids, NEFA) in cultures of rat adipocytes isolated from epididymal white adipose tissue. beta-Nonselective (isoprenaline) and beta(3)-selective (BRL-37344) agonists and the postadrenoceptor agents such as dibutyryl-cAMP, forskolin, and 3-isobutyl-1-methylxanthine significantly increased nitrite, glycerol, and NEFA levels with BRL-37344 being the most potent. Conversely, addition of beta-nonselective (propranolol) or beta(3)-selective (bupranolol) antagonist or the adenylyl cyclase inhibitor (SQ 22,536) significantly reduced beta-agonist-induced NO production and lipolysis. For beta-adrenoceptor agonists, antagonists, and their pairs, there was a positive correlation between medium nitrite and glycerol or NEFA with r(2) being 0.90 and 0.84, respectively. The possible relationship between NO and lipolysis was revealed after adipocyte treatment with nonspecific (N(omega)-nitro-l-arginine methyl ester, l-NAME) and specific (aminoguanidine) NOS inhibitors. Both l-NAME and aminoguanidine significantly inhibited the lipolytic effect of BRL-37344. Moreover, NO-donor (S-nitroso-N-acetylpenicillamine) at higher concentration increased basal glycerol and NEFA levels. 8-bromo-cyclic GMP had no effect on adipocyte lipolysis. These data suggest that beta-adrenergic lipolysis, specifically beta(3)-adrenoceptor effect, which is realized via the adenylyl cyclase/cAMP/protein kinase A signaling cascade, involves NO production downstream of beta(3)-adrenoceptor/cAMP pathway.  相似文献   

9.
Abstract: It has been reported that antidepressant treatment in rats results in a significant increase of Gs-mediated stimulation of adenylyl cyclase and this effect correlates well with the clinical therapeutic response. This increased activity occurs despite a down-regulation of several receptors linked normally to the stimulation of that enzyme. To distinguish between these effects and to determine whether presynaptic components of the cell are required, C6 glioma cells were treated with antidepressants. Tricyclic (amitriptyline and desipramine) or atypical (iprindole) antidepressant exposure to C6 cells for 5 days significantly increased guanylyl-5′-imidodiphosphate [Gpp(NH)p]-stimulated adenylyl cyclase activity in membrane preparations in a manner similar to that seen for rat brain membranes after 21-day treatment. This effect was drug dose and exposure time dependent. Nevertheless, stimulation of adenylyl cyclase by isoproterenol was decreased after antidepressant treatment. By comparison, the antidepressant-induced β-receptor desensitization occurred earlier than the enhancement of Gpp(NH)p-activated adenylyl cyclase, and extensive desensitization of β receptors by isoproterenol treatment did not enhance the Gpp(NH)p-stimulated adenylyl cyclase activity. These results indicated that the antidepressant has a direct effect on cell signaling and this enhanced Gpp(NH)p-stimulated adenylyl cyclase activity is not correlated with desensitization of β-adrenergic receptor stimulated adenylyl cyclase. These data contribute to the suggestion that G proteins (especially Gs) are the target of antidepressant actions. Immunoblotting showed that neither the number of G protein subunits (αs, αi, αo, and β) nor their association with the plasma membrane was changed after antidepressant treatment. Thus, these results are consistent with the hypothesis that chronic antidepressant treatment acts directly at the postsynaptic membrane to increase the coupling between Gs and adenylyl cyclase.  相似文献   

10.
11.
12.
13.
In vitro lipolysis by chicken adipose explants was stimulated by growth hormone (GH) or glucagon. Adenosine or the adenosine agonist, N6-phenylisopropyladenosine (PIA), inhibited GH stimulated lipolysis, the effect of adenosine not being observed in the presence or adenosine deaminase. Glucagon induced lipolysis was also reduced by PIA. It is suggested that adenosine may act by Gi linked to either adenylate cyclase (for glucagon) or the signal transduction mechanism for GH. Lipolysis was not stimulated by GH in the presence of phenylephrine (α1 adrenergic agonist), isoproterenol (β adrenergic agonist), adrenaline or glucagon. Although the presence of p-amino clonidine (α2 adrenergic agonist) depressed basal lipolysis, a response to GH was still present. Either glucagon or β-adrenergic agonists (isoproterenol, adrenaline) stimulated lipolysis. In both cases, GH attenuated the lipolytic response to these hormones, which act via a cyclic adenosine monophosphate signal transduction mechanism.  相似文献   

14.
The effects of the adrenergic blocking agents phenoxybenzamine, phentolamine, indoramin and propranol on adrenalin-stimulated glucose uptake, lipolysis and cyclic AMP formation have been studied in rat-isolated fat cells. The β-adrenergic blocking agent propranolol was found to inhibit adrenaline-stimulated lipolysis and cyclic AMP formation at concentrations which did not inhibit adrenalin-stimulated glucose uptake. Conversely, the α-adrenergic blocking agent phenoxybenzamine inhibited adrenalin-stimulated glucose uptake at concentrations which did not inhibit lipolysis and cyclic AMP formation. The α-adrenergic blocking agents phentolamine and indoramin did not show differential effects on adrenalin-stimulated lipolysis and glucose uptake. Phenoxybenzamine had no effect on glucose uptake stimulated by insulin, adrenocorticotropic hormone and dibutyryl cyclic AMP. It is suggested that a substantial proportion of adrenalin-stimulated glucose uptake in rat-isolated fat cells is mediated by a mechanism not involving cyclic AMP. The adrenalin receptor was apparently α in type although the lack of effects of phentolamine and indoramin were not typical of those described on other α-systems.  相似文献   

15.
Oxidation of [14C]glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol and norepinephrine, which all interact with β-adrenergic receptors and by adrenorticotrophic hormone. In contrast α-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The β-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, ephinephrine and phenoxybenzamine did not the α-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both liposlysis and glucose metabolism in the presence of either epinephrine or norepinephrine. All α-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered liposlysis and glucose oxidation in isolated adipocytes exposed to isoproterenol. However, when adrenorcortropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the α-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both α and β adrenergic receptors on hamster epididymal adipocytes and suggests that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through β receptors.  相似文献   

16.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

17.
We previously reported that PEGylated conjugated linoleic acid (PCLA) as a pro-drug treatment of cultures of 3T3-L1 cells containing differentiated adipocytes caused de-differentiation by downregulation of PPARgamma2-induced adipogenesis, and cell apoptosis induced by PCLA was lower than that induced by conjugated linoleic acid (CLA) owing to the biocompatible and hydrophilic properties of poly(ethylene glycol) (PEG). To further investigate our previous observations, the present study is designed to evaluate the lipolytic action of PCLA and its role in biochemical signaling pathways of 3T3-L1 cells when compared to the CLA itself. Although both CLA and PCLA stimulated lipolysis, our results indicated a sensitivity difference between CLA and PCLA treatment: a time-dependent effect on lipolysis and p-extracellular signal-related kinases (ERK) expression was observed for PCLA-treated, but not for CLA-treated cultures. Also, the induction by PCLA of mitogen-activated protein kinase kinase (MEK)/ERK mitogen-activated protein kinase (MAPK) activation was linked to secretion of adipo-cytokines, interleukin-6 (IL-6), and interleukin-8 (IL-8), in time-dependent manners. Interestingly, adenylyl cyclase inhibitor, 2', 5'-dideoxyadenosine (DDA), pre-treatment did not prevent PCLA-stimulated lipolysis. In fact, isoproterenol, but not PCLA, caused a significant increase in cyclic adenosine monophosphate (cAMP) levels, suggesting that the PCLA-induced lipolysis was not mediated in the conventional cAMP-dependent pathway and the cAMP was the intracellular mediator for isoproterenol-induced lipolysis. Overall, our findings provide support for a role for PCLA as a pro-drug in the regulation of metabolism in adipose tissue.  相似文献   

18.
With the finding that brown adipose tissue is present and negatively correlated to obesity in adult man, finding the mechanism(s) of how to activate brown adipose tissue in humans could be important in combating obesity, type 2 diabetes, and their complications. In mice, the main regulator of nonshivering thermogenesis in brown adipose tissue is norepinephrine acting predominantly via β(3)-adrenergic receptors. However, vast majorities of β(3)-adrenergic agonists have so far not been able to stimulate human β(3)-adrenergic receptors or brown adipose tissue activity, and it was postulated that human brown adipose tissue could be regulated instead by β(1)-adrenergic receptors. Therefore, we have investigated the signaling pathways, specifically pathways to nonshivering thermogenesis, in mice lacking β(3)-adrenergic receptors. Wild-type and β(3)-knockout mice were either exposed to acute cold (up to 12 h) or acclimated for 7 wk to cold, and parameters related to metabolism and brown adipose tissue function were investigated. β(3)-knockout mice were able to survive both acute and prolonged cold exposure due to activation of β(1)-adrenergic receptors. Thus, in the absence of β(3)-adrenergic receptors, β(1)-adrenergic receptors are effectively able to signal via cAMP to elicit cAMP-mediated responses and to recruit and activate brown adipose tissue. In addition, we found that in human multipotent adipose-derived stem cells differentiated into functional brown adipocytes, activation of either β(1)-adrenergic receptors or β(3)-adrenergic receptors was able to increase UCP1 mRNA and protein levels. Thus, in humans, β(1)-adrenergic receptors could play an important role in regulating nonshivering thermogenesis.  相似文献   

19.
Inducible nitric oxide synthase modulates lipolysis in adipocytes   总被引:5,自引:0,他引:5  
The role of inducible nitric oxide synthase (iNOS) in the modulation of adipocyte lipolysis was investigated. Treatment of white and brown adipose cell lines and mouse adipose explants with a mixture of tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide (LPS) doubled the lipolytic rate, and this was associated with marked induction of iNOS expression and nitric oxide (NO) production. iNOS inhibition by 1400W, aminoguanidine, or L-NIL pretreatment further increased the cytokine/LPS-mediated lipolysis by 30% (P < 0.05) in cultured adipocytes and in adipose explants. However, this potentiating effect of iNOS inhibition was abolished in adipose explants isolated from iNOS knockout mice. Pharmacological inhibitors of adenylyl cyclase or protein kinase A reduced cytokine/LPS-induced lipolysis and also blunted the potentiating effect of iNOS inhibition on the lipolytic rate. Furthermore, addition of the antioxidants l-cystine and l-glutathione to cytokine/LPS-stimulated adipocytes mimicked the lipolytic effect of iNOS inhibition. In conclusion, inhibition of iNOS activity in adipocytes potentiates cytokine/LPS-induced lipolysis. This effect was fully reversed by adenylyl cyclase and protein kinase A inhibitors but was mimicked by cellular antioxidants. These data suggest that iNOS-mediated NO production counteracts cytokine/LPS-mediated lipolysis in adipocytes and that this feedback mechanism involves an oxidative process upstream of cAMP production in the signaling pathway.  相似文献   

20.
The adenylyl cyclase system of preadipocytes derived from the stromal vascular fraction of perirenal rat fat pads was characterized. Unlike mature adipocytes, preadipocyte adenylyl cyclase was only weakly stimulated by catecholamines and adrenocorticotrophic hormone, but was stimulated by guanine nucleotides. Parathyroid hormone and 2-chloroadenosine also stimulated preadipocyte adenylyl cyclase. The adenylyl cyclase system of preadipocytes resembled that of undifferentiated 3T3-L1 cells. However, agents which induced the differentiation of the 3T3-L1 cell adenylyl cyclase system did not have a similar effect on preadipocytes. A medium (CDM6) which induced some differentiation of preadipocyte adenylyl cyclase was developed. The observations that the adenylyl cyclase system of preadipocytes and undifferentiated 3T3-L1 cells are similar, that preadipocyte adenylyl cyclase can be induced to develop along lines similar to early differentiation of 3T3-L1 cells, and that the adenylyl cyclase system of fully-differentiated 3T3-L1 cells has characteristics intermediate between preadipocytes and adipocytes, suggest that the differentiation of preadipocyte and 3T3-L1 adenyly cyclase in vitro mimics adipose adenylyl cyclase development in vivo. The increased catecholamine and ACTH stimulation, and reduced GTP and adenosine sensitivities of adipocytes compared to preadipocytes suggest that a number of genes affecting adenylyl cyclase-associated regulatory and receptor proteins are coordinately repressed and derepressed during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号