首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, there has been a notable increase in cancer incidence and mortality, and immune abnormalities have been closely linked to malignancy development. TANK-binding kinase 1 (TBK1) is a non-classical IκB kinase that regulates interferon and NF-κB signaling pathways and plays a crucial role in innate immunity. Recent studies have shown high expression levels of TBK1 and increased activity in various tumor cells, suggesting its involvement in the development and progression of multiple cancers. Targeting TBK1 for tumor therapy may be a possibility. However, little is known about the abnormal activation and dynamic regulation of TBK1 in cancer. First, we utilized the BioID biotinylation technique combined with TMT-based quantitative proteomics to analyze the TBK1 interacting proteins. Our results revealed that TXLNA interacts with TBK1 and binds to the α-helical scaffold of TBK1. The expression of TXLNA could affect the S172 phosphorylation of TBK1. PPM1B is a phosphatase that can dephosphorylate TBK1 S172, so we used the APEX2 proximity labeling technique combined with TMT-based quantitative proteomics to explore the interacting proteins of PPM1B and search for the regulatory pathway of TXLNA on TBK1 phosphorylation. We found that PPM1B interacts with TXLNA. Based on these results, we further found that TXLNA impairs the binding of PPM1B to TBK1, inhibiting the dephosphorylation of TBK1 and contributing to the abnormal enhancement of TBK1 activity in cancer cells. This study sheds light on the potential mechanism of aberrant activation and dynamic regulation of TBK1 in tumors and provides a potential target for tumor therapy.  相似文献   

2.
Stimulator of interferon genes (STING, also known as MITA and ERIS) is critical in protecting the host against DNA pathogen invasion. However, the molecular mechanism underlying the regulation of STING remains unclear. Here, we show that PPM1A negatively regulates antiviral signaling by targeting STING in its phosphatase activity-dependent manner, and in a line with this, PPM1A catalytically dephosphorylates STING and TBK1 in vitro. Importantly, we provide evidence that whereas TBK1 promotes STING aggregation in a phosphorylation-dependent manner, PPM1A antagonizes STING aggregation by dephosphorylating both STING and TBK1, emphasizing that phosphorylation is crucial for the efficient activation of STING. Our findings demonstrate a novel regulatory circuit in which STING and TBK1 reciprocally regulate each other to enable efficient antiviral signaling activation, and PPM1A dephosphorylates STING and TBK1, thereby balancing this antiviral signal transduction.  相似文献   

3.
4.
5.
RIG-I-like receptors (RLRs) are cytoplasmic sensors for viral RNA that elicit antiviral innate immune responses. RLR signaling culminates in the activation of the protein kinase TBK1, which mediates phosphorylation and nuclear translocation of IRF3 that regulates expression of type I interferon genes. Here, we found that Nucleoporin 93 (Nup93), components of nuclear pore complex (NPC), plays an important role in RLR-mediated antiviral responses. Nup93-deficient RAW264.7 macrophage cells exhibited decreased expression of Ifnb1 and Cxcl10 genes after treatment with a synthetic RLR agonist stimulation as well as Newcastle Disease Virus infection. Silencing Nup93 in murine primary macrophages and embryonic fibroblasts also resulted in reduced expression of these genes. IRF3 nuclear translocation during RLR signaling was impaired in Nup93-deficient RAW264.7 cells. Notably, the activation of TBK1 during RLR signaling was also decreased in Nup93-deficient cells. We found that Nup93 formed a complex with TBK1, and Nup93 overexpression enhanced TBK1-mediated IFNβ promoter activation. Taken together, our findings suggest that Nup93 regulates antiviral innate immunity by enhancing TBK1 activity and IRF3 nuclear translocation.  相似文献   

6.
Upon virus infection, the innate immune response provides the first line of protection and rapidly induces type I interferons (IFNα/β), which mediate potent antiviral effects. To maintain homeostasis and prevent autoimmunity, IFN production is tightly regulated; however, the mechanisms of negative regulation are poorly understood. Herein, we demonstrate that the A20 binding inhibitor of NF-κB 1 (ABIN1) is a novel negative regulator of antiviral signaling. Overexpression of ABIN1 inhibited IFN-β promoter activation in response to virus infection or poly(I:C) transfection, whereas siRNA-mediated knockdown of ABIN1 enhanced IFN-β production upon virus infection. ABIN1 interacted with the A20 regulatory molecule TAX1BP1 and was essential for the recruitment of TAX1BP1 and A20 to the noncanonical IκB kinases TBK1 and IKKi in response to poly(I:C) transfection. ABIN1 and TAX1BP1 together disrupted the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKKi to attenuate lysine 63-linked polyubiquitination of TBK1/IKKi. Finally, an intact ubiquitin binding domain of ABIN1 was essential for ABIN1 to interact with TBK1/IKKi and inhibit IFN-β production upon poly(I:C) transfection or virus infection. Together, these results suggest that ABIN1 requires its ubiquitin binding domain and cooperates with TAX1BP1 and A20 to restrict antiviral signaling.  相似文献   

7.
TANK-binding kinase-1 (TBK1) is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella), more extensive bacterial proliferation was observed in tbk1(-/-) than tbk1(+/+) cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-)cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.  相似文献   

8.
9.
Interferon regulatory factors (IRFs) are involved in gene regulation in many biological processes including the antiviral, growth regulatory, and immune modulatory functions of the interferon system. Several studies have demonstrated that IRF-3, IRF-5, and IRF-7 specifically contribute to the innate antiviral response to virus infection. It has been reported that virus-specific phosphorylation leads to IRF-5 nuclear localization and up-regulation of interferon, cytokine, and chemokine gene expression. Two nuclear localization signals have been identified in IRF-5, both of which are sufficient for nuclear translocation and retention in virus-infected cells. In the present study, we demonstrate that a CRM1-dependent nuclear export pathway is involved in the regulation of IRF-5 subcellular localization. IRF-5 possesses a functional nuclear export signal (NES) that controls dynamic shuttling between the cytoplasm and the nucleus. The NES element is dominant in unstimulated cells and results in the predominant cytoplasmic localization of IRF-5. Mutation of two leucine residues in the NES motif to alanine, or three adjacent Ser/Thr residues to the phosphomimetic Asp, results in constitutively nuclear IRF-5 and suggests that phosphorylation of adjacent Ser/Thr residues may contribute to IRF-5 nuclear accumulation in virus-induced cells. IKK-related kinases TBK1 and IKKepsilon have been shown to phosphorylate and activate IRF-3 and IRF-7, leading to the production of type 1 interferons and the development of a cellular antiviral state. We examined the phosphorylation and activation of IRF-5 by TBK1 and IKKepsilon kinases. Although IRF-5 is phosphorylated by IKKepsilon and TBK1 in co-transfected cells, the phosphorylation of IRF-5 did not lead to IRF-5 nuclear localization or activation.  相似文献   

10.
干扰素调节因子-3(interferon regulatory factor-3,IRF-3)是IRF家族中重要 转录因子之一,在调控干扰素(interferon, IFN)基因表达和抗病毒天然免疫反应中具有重要作 用. 最新发现的MITA (mediator of IRF-3 activation, 又称STING/ERIS)蛋白是宿主抗病 毒天然免疫反应中的一种重要调节分子. 病毒侵染时,MITA与IRF-3相互作用,特异性激活 IRF-3,并募集TANK结合激酶1(TANK binding kinase 1, TBK1)与IFN通路中的线粒体抗 病毒信号蛋白MAVS(mitochondrial anti-viral signaling protein)形成复合物,且MITA可 被TBK1磷酸化,诱导Ⅰ型IFN及IFN刺激基因(interferon stimulate genes, ISG)的表达 ,诱发抗病毒天然免疫反应. 同时还发现,泛素连接酶RNF5(ring finger protein 5)可对MITA 发生泛素化修饰从而抑制其对IRF-3活化,实现对宿主抗病毒天然免疫反应负调节作用. 本 室研究发现,严重性急性呼吸系统综合症冠状病毒(severe acute respiratory syndrome co ronavirus, SARS-CoV)和人类新型冠状病毒(human coronavirus NL63, HCoV-NL63)的 木瓜样蛋白酶(papain-like protease, PLP)利用其特有的去泛素化酶(deubiquitinase, DUB)活性,通过宿主细胞泛素-蛋白酶体信号系统对IRF-3的泛素化等翻译后修饰进行调节 ,从而成为该种病毒逃逸机体抗病毒防御系统主要手段之一.  相似文献   

11.
TANK-binding kinase 1 (TBK1) is an important enzyme in the regulation of cellular antiviral effects. TBK1 regulates the activity of the interferon regulatory factors IRF3 and IRF7, thereby playing a key role in type I interferon (IFN) signaling pathways. The structure of TBK1 consists of an N-terminal kinase domain, a middle ubiquitin-like domain (ULD), and a C-terminal elongated helical domain. It has been reported that the ULD of TBK1 regulates kinase activity, playing an important role in signaling and mediating interactions with other molecules in the IFN pathway. In this study, we present the crystal structure of the ULD of human TBK1 and identify several conserved residues by multiple sequence alignment. We found that a hydrophobic patch in TBK1, containing residues Leu316, Ile353, and Val382, corresponding to the “Ile44 hydrophobic patch” observed in ubiquitin, was conserved in TBK1, IκB kinase epsilon (IKK?/IKKi), IκB kinase alpha (IKKα), and IκB kinase beta (IKKβ). In comparison with the structure of the IKKβ ULD domain of Xenopus laevis, we speculate that the Ile44 hydrophobic patch of TBK1 is present in an intramolecular binding surface between ULD and the C-terminal elongated helices. The varying surface charge distributions in the ULD domains of IKK and IKK-related kinases may be relevant to their specificity for specific partners.  相似文献   

12.
TANK-binding kinase 1 (TBK1) serves as a key convergence point in multiple innate immune signaling pathways. In response to receptor-mediated pathogen detection, TBK1 phosphorylation promotes production of pro-inflammatory cytokines and type I interferons. Increasingly, TBK1 dysregulation has been linked to autoimmune disorders and cancers, heightening the need to understand the regulatory controls of TBK1 activity. Here, we describe the mechanism by which suppressor of IKKϵ (SIKE) inhibits TBK1-mediated phosphorylation of interferon regulatory factor 3 (IRF3), which is essential to type I interferon production. Kinetic analyses showed that SIKE not only inhibits IRF3 phosphorylation but is also a high affinity TBK1 substrate. With respect to IRF3 phosphorylation, SIKE functioned as a mixed-type inhibitor (Ki, app = 350 nm) rather than, given its status as a TBK1 substrate, as a competitive inhibitor. TBK1 phosphorylation of IRF3 and SIKE displayed negative cooperativity. Both substrates shared a similar Km value at low substrate concentrations (∼50 nm) but deviated >8-fold at higher substrate concentrations (IRF3 = 3.5 μm; SIKE = 0.4 μm). TBK1-SIKE interactions were modulated by SIKE phosphorylation, clustered in the C-terminal portion of SIKE (Ser-133, -185, -187, -188, -190, and -198). These sites exhibited striking homology to the phosphorylation motif of IRF3. Mutagenic probing revealed that phosphorylation of Ser-185 controlled TBK1-SIKE interactions. Taken together, our studies demonstrate for the first time that SIKE functions as a TBK1 substrate and inhibits TBK1-mediated IRF3 phosphorylation by forming a high affinity TBK1-SIKE complex. These findings provide key insights into the endogenous control of a critical catalytic hub that is achieved not by direct repression of activity but by redirection of catalysis through substrate affinity.  相似文献   

13.
14.
15.
16.
17.
Interleukin-17 (IL-17) is critically involved in the pathogenesis of various inflammatory disorders. IL-17 receptor (IL-17R)-proximal signaling complex (IL-17R-Act1-TRAF6) is essential for IL-17-mediated NF-κB activation, while IL-17-mediated mRNA stability is TRAF6 independent. Recently, inducible IκB kinase (IKKi) has been shown to phosphorylate Act1 on Ser 311 to mediate IL-17-induced mRNA stability. Here we show that TANK binding kinase 1 (TBK1), the other IKK-related kinase, directly phosphorylated Act1 on three other Ser sites to suppress IL-17R-mediated NF-κB activation. IL-17 stimulation activated TBK1 and induced its association with Act1. IKKi also phosphorylated Act1 on the three serine sites and played a redundant role with TBK1 in suppressing IL-17-induced NF-κB activation. Act1 phosphorylation on the three sites inhibited its association with TRAF6 and consequently NF-κB activation in IL-17R signaling. Interestingly, TRAF6, but not TRAF3, which is the upstream adaptor of the IKK-related kinases in antiviral signaling, was critical for IL-17-induced Act1 phosphorylation. TRAF6 was essential for IL-17-induced TBK1 activation, its association with Act1, and consequent Act1 phosphorylation. Our findings define a new role for the IKK-related kinases in suppressing IL-17-mediated NF-κB activation through TRAF6-dependent Act1 phosphorylation.  相似文献   

18.
SARS coronavirus (SARS-CoV) develops an antagonistic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activation of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro efficiently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored Plpro domain (PLpro-TM) from SARS-CoV inhibits STING/TBK1/IKK?-mediated activation of type I IFNs and disrupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBK1. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKK?, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activation of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is disrupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3- TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which Plpro negatively regulates IRF3 activation by interaction with STING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity.  相似文献   

19.
20.
Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF) is an adaptor molecule that is recruited to TLR3 and -4 upon agonist stimulation and triggers activation of IFN regulatory factor 3 (IRF3) and expression of type 1 IFNs, which are critical for cellular antiviral responses. We show that Akt is a downstream molecule of TRIF/TANK-binding kinase 1 (TBK1) and plays an important role in the activation of IRF3 by TLR3 and -4 agonists. Blockade of Akt by a dominant-negative mutant or by short interfering RNA decreased IRF3 activation and IFN-β expression induced by polyinosinic:polycytidylic acid [poly(I:C)], LPS, TRIF, and TBK1. Association of endogenous TBK1 and Akt was observed in macrophages when stimulated with poly(I:C) and LPS. In vitro kinase assays combined with reversed-phase liquid chromatography mass spectrometry analysis showed that TBK1 enhanced phosphorylation of Akt on Ser(473), whereas knockdown of TBK1 expression by short interfering RNA in macrophages decreased poly(I:C)- and LPS-induced Akt phosphorylation. Embryonic fibroblasts derived from TBK1 knockout mice also showed impaired Akt phosphorylation in response to poly(I:C) and LPS. To our knowledge, our results demonstrate a new regulatory mechanism for Akt activation mediated by TBK1 and a novel role of Akt in TLR-mediated immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号