首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ye R  Wang W  Iki T  Liu C  Wu Y  Ishikawa M  Zhou X  Qi Y 《Molecular cell》2012,46(6):859-870
In plants, DNA methylation can be mediated by a class of Argonaute4 (AGO4)-associated heterochromatic siRNAs (hc-siRNAs), through a pathway termed RNA-directed DNA methylation (RdDM). It has been thought that RdDM is solely a nuclear process, as both the biogenesis and functioning of hc-siRNAs take place in the nucleus. In this study, we unexpectedly found that hc-siRNAs are predominantly present in the cytoplasm. We demonstrated that AGO4 is loaded with hc-siRNAs in the cytoplasm and the formation of mature AGO4/siRNA complexes requires HSP90 and the cleavage activity of AGO4. Intriguingly, siRNA binding facilitates the redistribution of AGO4 into the nucleus, likely through inducing conformational change that leads to the exposure of the nuclear localization signal (NLS). Our findings reveal an unsuspected cytoplasmic step in the RdDM pathway. We propose that selective nuclear import of mature AGO4/siRNA complexes is a key regulatory point prior to the effector stage of RdDM.  相似文献   

2.
Poly(L-histidine) (PLH) with dimethylimidazole groups has been synthesized as a pH-sensitive polypeptide to control the stability of its small interfering RNA (siRNA) polyion complexes for RNA interference (RNAi). The resulting methylated PLH (PLH-Me) was water-soluble despite deprotonation of the imidazole groups at physiological pH, as determined by acid-base titration and solution turbidity measurement. Agarose gel retardation assay proved that the quaternary dimethylimidazole groups worked as cationic groups to retain siRNA. The stability of the PLH-Me/siRNA complexes has depended on the content of hydrophobic groups, that is, τ/π-methylimidazole groups as well as deprotonated imidazole groups. PLH-Me exhibited no significant cytotoxicity despite the existence of cationic dimethylimidazole groups. By use of PLH-Me as a pH-sensitive siRNA carrier, the PLH-Me/siRNA complexes mediated efficient siRNA delivery attributed to the dimethylimidazole groups, and the gene silencing depended on the content balance among dimethyl, τ/π-methyl, and unmodified imidazole groups. These results suggest that PLH-Me controls the stability of siRNA polyion complexes by enhancing noncytotoxic siRNA delivery by optimizing the content balance of dimethyl, τ/π-methyl, and unmodified imidazole groups.  相似文献   

3.
Dicetyl phosphate-tetraethylenepentamine (DCP-TEPA) conjugate was newly synthesized and formed into liposomes for efficient siRNA delivery. Formulation of DCP-TEPA-based polycation liposomes (TEPA-PCL) complexed with siRNA was examined by performing knockdown experiments using stable EGFP-transfected HT1080 human fibrosarcoma cells and siRNA for GFP. An adequate amount of DCP-TEPA in TEPA-PCL and N/P ratio of TEPA-PCL/siRNA complexes were determined based on the knockdown efficiency. Then, the biodistribution of TEPA-PCL modified with poly(ethylene glycol) (PEG) was examined in BALB/c mice. As a result, TEPA-PCL modified with PEG6000 avoided reticuloendothelial system uptake and showed long circulation in the bloodstream. On the other hand, PEGylation of TEPA-PCL/siRNA complexes caused dissociation of a portion of the siRNA from the liposomes. However, we found that the use of cholesterol-conjugated siRNA improved the interaction between TEPA-PCL and siRNA, which allowed PEGylation of TEPA-PCL/siRNA complexes without siRNA dissociation. In addition, TEPA-PCL complexed with cholesterol-conjugated siRNA showed potent knockdown efficiency in stable luciferase-transfected B16-F10 murine melanoma cells. Finally, the biodistribution of cholesterol-conjugated siRNA formulated in PEGylated TEPA-PCL was examined by performing near-infrared fluorescence imaging in Colon26 NL-17 murine carcinoma-bearing mice. Our results showed that tumor targeting with siRNA via systemic administration was achieved by using PEGylated TEPA-PCL combined with active targeting with Ala-Pro-Arg-Pro-Gly, a peptide used for targeting angiogenic endothelium.  相似文献   

4.
The aim of this study was to investigate chitosan/siRNA complexes formulated with various chitosan salts (CS) including chitosan aspartate (CS-Asp), chitosan glutamate (CS-Glu), chitosan acetate (CS-Ac), and chitosan hydrochloride (CS-HCl) for in vitro siRNA delivery into stable and constitutive enhanced green fluorescent protein (EGFP)-expressing HeLa cells. The CS/siRNA complexes were characterized by 2% agarose gel electrophoresis and investigated for their transfection efficiency in stable and constitutive EGFP-expressing HeLa cells. The cytotoxicity of the complexes was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The formation of complexes CS/siRNA is mainly dependent on the weight ratio, whereas salt form and molecular weight has less effect. The particle sizes of the complete complexes were in the range of 270–373 nm except the complete complex of CS-Ac, with a slightly positive charge of less than 2 mV. The ability of CS to transfer functionally active siRNA into cell culture is mainly dependent on the weight ratio and molecular weight of CS whereas salt form of CS has less effect. The high gene-silencing efficiency was observed with low MW of CS (20 kDa) and high weight ratio of 32. Over 80% average cell viabilities were observed for CS/siRNA complexes in all weight ratios comparison to untreated cells. This study suggests CS salts have the potential to be used as safe siRNA delivery vectors.  相似文献   

5.
In this study, we examined the potential of cationic nanoparticle - polyethyleneimine-introduced chitosan shell/poly (methyl methacrylate) core nanoparticles (CS-PEI) for siRNA delivery. Initially, DNA delivery was performed to validate the capability of CS-PEI for gene delivery in the human cervical cancer cell line, SiHa. siRNA delivery were subsequently carried out to evaluate the silencing effect on targeted E6 and E7 oncogenes. Physicochemical properties including size, zeta potential and morphology of CS-PEI/DNA and CS-PEI/siRNA complexes, were analyzed. The surface charges and sizes of the complexes were observed at different N/P ratios. The hydrodynamic sizes of the CS-PEI/DNA and CS-PEI/siRNA were approximately 300-400 and 400-500nm, respectively. Complexes were positively charged depending on the amount of added CS-PEI. AFM images revealed the mono-dispersed and spherical shapes of the complexes. Gel retardation assay confirmed that CS-PEI nanoparticles completely formed complexes with DNA and siRNA at a N/P ratio of 1.6. For DNA transfection, CS-PEI provided the highest transfection result. Localization of siRNA delivered through CS-PEI was confirmed by differential interference contrast (DIC) confocal imaging. The silencing effect of siRNA specific to HPV 16 E6/E7 oncogene was examined at 18 and 24h post-transfection. The results demonstrated the capacity of CS-PEI to suppress the expression of HVP oncogenes.  相似文献   

6.
Recently, small interfering RNA (siRNA)-based therapeutics have been used to treat diseases. Efficient and stable siRNA delivery into disease cells is important in the use of this agent for treatment. In the present study, pullulan was introduced into polyethylenimine (PEI) for liver targeting. PEI/siRNA or pullulan-containing PEI/siRNA complexes were delivered into mice through the tail vein either by a hydrodynamics- or non-hydrodynamics-based injection. The incidence of mortality was found to increase with an increase in the nitrogen/phosphorus (N/P) ratio of PEI/siRNA complexes. Moreover, the hydrodynamics-based injection increased mice mortality. Introduction of pullulan into PEI dramatically reduced mouse death after systemic injection. After systemic injection, the PEI/fluorescein-labeled siRNA complex increased the level of fluorescence in the lung and the PEI-pullulan/siRNA complex led to an increased fluorescence level in the liver. These results suggest that the PEI-pullulan polymer may be a useful, low toxic means for efficient delivery of siRNA into the liver.  相似文献   

7.
In this study, dimerized siRNAs linked by a cleavable disulfide bond were synthesized for efficient intracellular delivery and gene silencing. The reducible dimerized siRNAs showed far enhanced complexation behaviors with cationic polymers as compared to monomeric siRNA at the same N/P ratio, as demonstrated by microscopic techniques and gel characterization. Dimerized siRNAs targeting green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) were complexed with linear polyethylenimine (LPEI), and treated to various cell lines to examine gene transfection efficiencies. In comparison to monomer siRNA/LPEI complexes, dimeric siRNA/LPEI complexes showed greatly enhanced cellular uptake and gene silencing effects in vitro. These results were mainly due to the higher charge density and promoted chain flexibility of the dimerized siRNAs, providing more compact and stable siRNA complexes. In addition, the conjugation strategy of reducible siRNA dimers was further extended: poly(ethylene glycol) (PEG)-modified dimerized siRNAs and heterodimers of siRNAs targeting two different genes (e.g., GFP and VEGF) were synthesized, and their gene silencing efficiencies were characterized. The dimerized siRNA complex system holds great potential for in vivo systemic gene therapy.  相似文献   

8.
CADY is a cell-penetrating peptide spontaneously making non-covalent complexes with Short interfering RNAs (siRNAs) in water. Neither the structure of CADY nor that of the complexes is resolved. We have calculated and analyzed 3D models of CADY and of the non-covalent CADY–siRNA complexes in order to understand their formation and stabilization. Data from the ab initio calculations and molecular dynamics support that, in agreement with the experimental data, CADY is a polymorphic peptide partly helical. Taking into consideration the polymorphism of CADY, we calculated and compared several complexes with peptide/siRNA ratios of up to 40. Four complexes were run by using molecular dynamics. The initial binding of CADYs is essentially due to the electrostatic interactions of the arginines with siRNA phosphates. Due to a repetitive arginine motif (XLWR(K)) in CADY and to the numerous phosphate moieties in the siRNA, CADYs can adopt multiple positions at the siRNA surface leading to numerous possibilities of complexes. Nevertheless, several complex properties are common: an average of 14 ± 1 CADYs is required to saturate a siRNA as compared to the 12 ± 2 CADYs experimentally described. The 40 CADYs/siRNA that is the optimal ratio for vector stability always corresponds to two layers of CADYs per siRNA. When siRNA is covered by the first layer of CADYs, the peptides still bind despite the electrostatic repulsion. The peptide cage is stabilized by hydrophobic CADY–CADY contacts thanks to CADY polymorphism. The analysis demonstrates that the hydrophobicity, the presence of several positive charges and the disorder of CADY are mandatory to make stable the CADY–siRNA complexes.  相似文献   

9.
Physicochemical characterization is a useful tool in understanding lipoplex assemblies and their correlation to biological activity. Anionic lipid-based ternary siRNA complexes composed of anionic liposomes (DOPG/DOPE), calcium ions and siRNA, have recently been shown to be safe and efficient in a breast cancer cell culture model. In the present work, the effects of various formulation parameters such as liposome composition (DOPG/DOPE ratio) and anionic lipid/Ca(2+)/siRNA molar charge ratio, on the physicochemical attributes (particle size, surface charge, siRNA loading efficiency and serum stability) of these ternary anionic lipoplexes were evaluated. Particle size, siRNA loading efficiency and serum stability correlated with the in vitro silencing efficiency of these lipoplexes. For example, large lipoplex particles (5/2.5/1 anionic lipid/Ca(2+)/siRNA molar charge ratio) showed less efficient silencing while absolute serum stability and high siRNA loading (1.3/2.5/1 anionic lipid/Ca(2+)/siRNA molar charge ratio), exhibited maximum silencing in breast cancer cells. The physicochemical properties also indicated that the siRNA exists in the complexed and/or encapsulated form within the lipoplexes, depending on the anionic lipid/siRNA charge ratio. Based on these studies a model representing lipid-siRNA association within the anionic lipoplexes prepared under various formulation conditions is proposed. Physicochemical attributes can be utilized to estimate in vitro activity of lipid-siRNA complexes and understand their morphology.  相似文献   

10.
Lipofectamine 2000 is commonly used for siRNA transfections. However, few studies have examined cellular responses to this delivery system. The purpose of this study is to evaluate the effect of siRNA transfection using Lipofectamine 2000 on cellular autophagy. Huh7.5 cells, stably transfected to express GFP–LC3, were treated with Lipofectamine 2000/negative control siRNA (NC siRNA) complexes. At different time points after treatment, cells were lysed and analyzed by immunoblotting and fluorescence spectroscopy. Cells were also observed using confocal microscopy. An increase of endogenous LC3 lipidation, GFP–LC3 fluorescence, and autophagosomal puncta was observed in cells treated with Lipofectamine 2000/NC siRNA complexes. The kinetics of the increase of GFP–LC3 fluorescence correlated with the concentration of NC siRNA transfected, where 50, 100, and 200 nM NC siRNA caused a significant increase at 72, 48, and 24 h, respectively, after transfection. A similar effect on the GFP–LC3 signal was also observed for cells treated with Lipofectamine 2000 complexed with two other NC siRNAs. The effects were also confirmed in another hepatoma cell line, H4IIE, by immunoblotting. Lipofectamine 2000-mediated transport of NC siRNAs led to an increase of autophagosomes in a dose- and time-dependent manner. Thus, this effect on cells should be taken into consideration when using this approach for intracellular delivery of siRNA.  相似文献   

11.
In this study, siRNAs terminated with thiol groups were multimerized and cross-linked using ~5 nm gold nanoparticles (AuNPs) via Au-S chemisorption that can be intracellularly reduced. AuNPs immobilized with single-stranded antisense siRNA were assembled with those with single-stranded sense siRNA via complementary hybridization or assembled with those with single-stranded dimeric sense siRNA. The multimerized siRNA cross-linked by AuNPs showed increased charge density and enhanced enzymatic stability, and exhibited good complexation behaviors with a polycationic carrier, linear polyethylenimine (L-PEI). The resultant multi-siRNA/AuNPs/L-PEI polyelectrolyte complexes exhibited far greater gene silencing efficiencies of green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF) compared to naked siRNA complexes. They could also be visualized by micro-CT imaging. The results suggest that AuNP-mediated multimerization of siRNAs could be a rational approach to achieve both gene silencing and imaging at a target tissue simultaneously.  相似文献   

12.

Background

A variety of synthetic carriers, such as cationic polymers and lipids, have been used as nonviral carriers for small interfering RNA (siRNA) delivery. Although siRNA polyplexes and lipoplexes exhibited good gene silencing efficiencies, they often showed serious cytotoxicities, which are not useful for clinical applications. A double‐stranded RNA binding cellular protein with highly specific siRNA binding property and noncytotoxicity was used for siRNA delivery.

Methods

A double‐stranded RNA binding domain (dsRBD) of human double‐stranded RNA activated protein kinase R was genetically produced and utilized to complex siRNA for intracellular delivery. For characterization of the siRNA/dsRBD complexes, decomplexation assay and RNase protection assay were performed. Cytotoxicity and target gene inhibition ability were also examined using human carcinoma cell lines.

Results

The recombinantly produced polypeptide dsRBD exhibited its inherent binding activity for siRNA without sequence specificity, and the siRNA/dsRBD complexes protected siRNA from degradation by ribonucleases. Green fluorescent protein (GFP) siRNA/dsRBD complexes showed prominent down‐regulation of a target GFP gene, when an endosomal escape function was supplemented by addition of a fusogenic peptide, KALA, in the formulation.

Conclusions

The results suggest that dsRBD‐based protein carriers could be successfully applied for a wide range of therapeutic siRNAs for intracellular gene inhibition without showing any cytotoxicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Efficient non-viral vectors for the in vivo siRNA transfer are still being searched for. Comparing the differences of the structural appearance of siRNA and pDNA one would assume differences in the assembling behaviour between these polyanions when using polycationic vectors such as nuclear proteins. The spontaneous assembly of nuclear proteins such as histone H1 (H1) with pDNA as polyanion which has intensively been investigated over the last decade, showed a particulate structure of the resulting complexes. For an efficient in vivo use small almost monomolecular structures are searched for. Using siRNA as the polyanion might enforce this structural prerequisite lacking unwanted aggregation processes, exploiting the molecular size of siRNA. We therefore investigated the structure of H1/siRNA complexes. Five commonly used methods characterizing the resulting assemblies such as retardation gels, static and dynamic light scattering, reduction of ethidium bromide fluorescence, analytical ultracentrifugation, and electron microscopy were used. From analytical ultracentrifugation we learned that under physiological salt conditions the siRNA-H1 binding was not cooperative, even though the gel analysis showed disproportionation which would be an indication for a cooperative binding mode. H1 formed very small and stable complexes with siRNA at a molar ratio of 1:1 and 1:2. In order to find out if the observed structural appearance of the H1/siRNA complexes is due to unspecific charge effects only or to special features of H1, polylysine was included in the study. Low molecular weight polylysine (K16) showed also non-cooperative binding with siRNA.  相似文献   

14.
Polyplexes between siRNA and poly(ethylene imine) (PEI) derivatives are promising nonviral carriers for siRNA. The polyplex stability is of critical importance for efficient siRNA delivery to the cytoplasm. Here, we investigate the effect of PEGylation at a constant ratio ( approximately 50%) on the biophysical properties of the polyplexes. Particle size, zeta potential, and stability against heparin as well as RNase digestion and reporter gene knockdown under in vitro conditions of different siRNA polyplexes were characterized. Stability and size of siRNA polyplexes were clearly influenced by PEI-PEG structure, and high degrees of substitution such as PEI(25k)-g-PEG(550)(30) resulted in large (300-400 nm), diffuse complexes (AFM) which showed condensation behavior only at high N/P ratios. All other polyplexes and the PEI control showed similar sizes (150 nm) and compact structures in AFM, with complete condensation reached at N/P ratio of 3. Stability of siRNA polyplexes against heparin displacement and RNase digestion could be modified by PEGylation. Protection against RNase digestion was highest for PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1), while siRNA/PEI provided insufficient protection. In knockdown experiments using NIH/3T3 fibroblasts stably expressing beta-galactosidase, it was shown that PEG chain length had a significant influence on biological activity of siRNA. Polyplexes with siRNA containing PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1) yielded similar efficiencies of ca. 70% knockdown as lipofectamine controls. Confocal microscopy demonstrated enhanced cellular uptake of siRNA into cytosol by polyplexes formation with PEI copolymers. In conclusion, both the chain length and graft density of PEG were found to strongly influence siRNA condensation and stability and hence affect the knockdown efficiency of PEI-PEG/siRNA polyplexes.  相似文献   

15.
The efficient delivery of nucleic acids as therapeutic agents is a major challenge in gene therapy. Peptides have recently emerged as a novel carrier for delivery of drugs and genes. C6M1 is a designed amphipathic peptide with the ability to form stable complexes with short interfering RNA (siRNA). The peptide showed a combination of random coil and helical structure in water but mainly adopted a helical conformation in the presence of anions or siRNA. Revealed by dynamic light scattering (DLS) and microscopy techniques, the interaction of C6M1 and siRNA in water and HEPES led to complexes of ∼70 and ∼155 nm in size, respectively, but showed aggregates as large as ∼500 nm in PBS. The time-dependent aggregation of the complex in PBS was studied by DLS and fluorescence spectroscopy. At molar ratio of 15∶1, C6M1 was able to completely encapsulate siRNA; however, higher molar ratios were required to obtain stable complexes. Naked siRNA was completely degraded in 4 h in the solution of 50% serum; however C6M1 protected siRNA against serum RNase over the period of 24 h. Western blotting experiment showed ∼72% decrease in GAPDH protein level of the cells treated with C6M1-siRNA complexes while no significant knockdown was observed for the cells treated with naked siRNA.  相似文献   

16.

Background

We recently reported an efficient formulation of siRNA targeting TNF-α, that was able to restore immunological balance in a mouse arthritis model following intravenous injection.

Method

Since this efficient formulation included the pre association of siRNA with a DNA cargo, we decided to extensively characterise siRNA lipoplexes with or without DNA cargo, in order to better understand the DNA cargo enhancing effect.

Results

We showed that addition of DNA cargo to siRNA lipoplexes led to specific gene extinction in vitro, using reduced siRNA concentration. This procedure is also applicable to other lipid vectors, like Lipofectamine or DMRIE-C. No structural modification could be observed in siRNA lipoplexes upon addition of DNA cargo using dynamic light scattering or transmission electronic microscopy. Nevertheless, we observed some slight differences, in the amount of lipid required to obtain neutrality of the complex and in stability of the complex towards incubation with heparan sulfate.

Conclusions

These results suggest that the addition of DNA cargo to siRNA complexes is an easy procedure that leads to more efficient complexes to transfer siRNA at low concentration and in the presence of serum.  相似文献   

17.

Background

RNA interference is a powerful method for the knockdown of pathologically relevant genes. The in vivo delivery of siRNAs, preferably through systemic, nonviral administration, poses the major challenge in the therapeutic application of RNAi. Small interfering RNA (siRNA) complexation with polyethylenimines (PEI) may represent a promising strategy for siRNA‐based therapies and, recently, the novel branched PEI F25‐LMW has been introduced in vitro. Vascular endothelial growth factor (VEGF) is frequently overexpressed in tumors and promotes tumor growth, angiogenesis and metastasis and thus represents an attractive target gene in tumor therapy.

Methods

In subcutaneous tumor xenograft mouse models, we established the therapeutic efficacy and safety of PEI F25‐LMW/siRNA‐mediated knockdown of VEGF. In biodistribution and siRNA quantification studies, we optimized administration strategies and, employing chemically modified siRNAs, compared the anti‐tumorigenic efficacies of: (i) PEI/siRNA‐mediated VEGF targeting; (ii) treatment with the monoclonal anti‐VEGF antibody Bevacizumab (Avastin®); and (iii) a combination of both.

Results

Efficient siRNA delivery is observed upon systemic administration, with the biodistribution being dependent on the mode of injection. Toxicity studies reveal no hepatotoxicity, proinflammatory cytokine induction or other side‐effects of PEI F25‐LMW/siRNA complexes or polyethylenimine, and tumor analyses show efficient VEGF knockdown upon siRNA delivery, leading to reduced tumor cell proliferation and angiogenesis. The determination of anti‐tumor effects reveals that, in pancreas carcinoma xenografts, single treatment with PEI/siRNA complexes or Bevacizumab is already highly efficacious, whereas, in prostate carcinoma, synergistic effects of both treatments are observed.

Conclusions

PEI F25‐LMW/siRNA complexes, which can be stored frozen as opposed to many other carriers, represent an efficient, safe and promising avenue in anti‐tumor therapy, and PEI/siRNA‐mediated, therapeutic VEGF knockdown exerts anti‐tumor effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Cell-penetrating peptides (CPPs) have evolved as promising new tools to deliver nucleic acids into cells. So far, the majority of these delivery systems require a covalent linkage between carrier and cargo. To exploit the higher flexibility of a non-covalent strategy, we focused on the characterisation of a novel carrier peptide termed MPGα, which spontaneously forms complexes with nucleic acids. Using a luciferase-targeted small interfering RNA (siRNA) as cargo, we optimised the conditions for MPGα-mediated transfection of mammalian cells. In this system, reporter gene activity could be inhibited up to 90% with an IC50 value in the sub-nanomolar range. As a key issue, we addressed the cellular uptake mechanism of MPGα/siRNA complexes applying various approaches. First, transfection of HeLa cells with MPGα/siRNA complexes in the presence of several inhibitors of endocytosis showed a significant reduction of the RNA interference (RNAi) effect. Second, confocal laser microscopy revealed a punctual intracellular pattern rather than a diffuse distribution of fluorescently labelled RNA-cargo. These data provide strong evidence of an endocytotic pathway contributing significantly to the uptake of MPGα/siRNA complexes. Finally, we quantified the intracellular number of siRNA molecules after MPGα-mediated transfection. The amount of siRNA required to induce half maximal RNAi was 10000 molecules per cell. Together, the combination of methods provided allows for a detailed side by side quantitative analysis of cargo internalisation and related biological effects. Thus, the overall efficiency of a given delivery technique as well as the mechanism of uptake can be assessed.  相似文献   

19.
Phagocytic macrophages and dendritic cells are desirable targets for potential RNAi (RNA interference) therapeutics because they often mediate pathogenic inflammation and autoimmune responses. We recently engineered a complex 5 component glucan-based encapsulation system for siRNA (small interfering RNA) delivery to phagocytes. In experiments designed to simplify this original formulation, we discovered that the amphipathic peptide Endo-Porter forms stable nanocomplexes with siRNA that can mediate potent gene silencing in multiple cell types. In order to restrict such gene silencing to phagocytes, a method was developed to entrap siRNA-Endo-Porter complexes in glucan shells of 2-4 μm diameter in the absence of other components. The resulting glucan particles containing fluorescently labelled siRNA were readily internalized by macrophages, but not other cell types, and released the labelled siRNA into the macrophage cytoplasm. Intraperitoneal administration of such glucan particles containing siRNA-Endo-Porter complexes to mice caused gene silencing specifically in macrophages that internalized the particles. These results from the present study indicate that specific targeting to phagocytes is mediated by the glucan, whereas Endo-Porter peptide serves both to anchor siRNA within glucan particles and to catalyse escape of siRNA from phagosomes. Thus we have developed a simplified siRNA delivery system that effectively and specifically targets phagocytes in culture or in intact mice.  相似文献   

20.
Mok H  Park TG 《Biopolymers》2008,89(10):881-888
A novel self-crosslinked and reducible peptide was synthesized for stable formation of nanoscale complexes with an siRNA-PEG conjugate to enhance transfection efficiency in serum containing condition without compromising cytotoxicity. A fusogenic peptide, KALA, with two cysteine residues at both terminal ends was crosslinked via disulfide linkages under mild DMSO oxidation condition. The reducible crosslinked KALA (cl-KALA) was used to form nano-complexes with green fluorescent protein (GFP) siRNA. Size and morphology of various polyelectrolyte complexes formulated with KALA and cl-KALA were comparatively analyzed. cl-KALA exhibited more reduced cell cytotoxicity and formed more stable and compact polyelectrolyte complexes with siRNA, compared with naked KALA and polyethylenimine (PEI), probably because of its increased charge density. The extent of gene silencing was quantitatively evaluated using MDA-MB-435 cells. cl-KALA/siRNA complexes showed comparable gene silencing efficiency with those of cytotoxic PEI. In a serum containing medium, cl-KALA/siRNA-PEG conjugate complexes exhibited superior gene inhibition because of the shielding effect of PEG on the surface. The formulation based on the self-crosslinked fusogenic peptide could be used as a biocompatible and efficient nonviral carrier for siRNA delivery. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 881-888, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号