首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Riparian zones function as important ecotones that reduce nitrate concentration in groundwater and inputs into streams. In the boreal forest of interior Alaska, permafrost confines subsurface flow through the riparian zone to shallow organic horizons, where plant uptake of nitrate and denitrification are typically high. 2. In this study, riparian zone nitrogen retention was examined in a high permafrost catchment (approximately 53% of land area underlain by permafrost) and a low permafrost catchment (approximately 3%). To estimate the contribution of the riparian zone to catchment nitrogen retention, we analysed groundwater chemistry using an end‐member mixing model. 3. Stream nitrate concentration was over twofold greater in the low permafrost catchment than the high permafrost catchment. Riparian groundwater was not significantly different between catchments, averaging 13 μm overall. Nitrogen retention, measured using the end‐member mixing model, averaged 0.75 and 0.22 mmol N m?2 day?1 in low and high permafrost catchments, respectively, over the summer. The retention rate of nitrogen in the riparian zone was 10–15% of the export in stream flow. 4. Our results indicate that the riparian zone functions as an important sink for groundwater nitrate and dissolved organic carbon (DOC). However, differences in stream nitrate and DOC concentrations between catchments cannot be explained by solute inputs from riparian groundwater to the stream and differences between streams are probably attributable to deeper groundwater inputs or flows from springs that bypass the riparian zone.  相似文献   

2.
In this study, we estimated whether changes in hydrological pathwaysduring storms could explain the large temporal variations of dissolvedorganic carbon (DOC) and nitrogen (DON) in the runoff of threecatchments: a forest and a grassland sub-catchment of 1600m2 delineated by trenches, and a headwater catchment of 0.7km2.The average annual DOC export from the sub-catchments was 185 kg DOCha–1 y–1 for the forest, 108 kg DOCha–1 y–1 for the grassland and 84 kgDOC ha–1 y–1 for the headwatercatchment. DON was the major form of the dissolved N in soil and streamwater. DON export from all catchments was approximately 6 kg Nha–1 y–1, which corresponded to 60% ofthe total N export and to 50% of the ambient wet N deposition. DOC andDON concentrations in weekly samples of stream water were positivelycorrelated with discharge. During individual storms, concentrations andproperties of DOC and DON changed drastically. In all catchments, DOCconcentrations increased by 6 to 7 mg DOC l–1 comparedto base flow, with the largest relative increment in the headwatercatchment (+350%). Concentrations of DON, hydrolysable amino acids, andphenolics showed comparable increases, whereas the proportion ofcarbohydrates in DOC decreased at peak flow. Prediction of DOC and DONconcentrations by an end-member mixing analysis (EMMA) on the base ofinorganic water chemistry showed that changes in water flow pathslargely explained these temporal variability. According to the EMMA, thecontribution of throughfall to the runoff peaked in the initial phase ofthe storm, while water from the subsoil dominated during base flow only.EMMA indicated that the contribution of the DOC and DON-rich topsoil washighest in the later stages of the storm, which explained the highestDOC and DON concentrations as the hydrograph receded. Discrepanciesbetween observed and predicted concentrations were largest for thereactive DOC compounds such as carbohydrates and phenolics. Theyoccurred at base flow and in the initial phase of storms. This suggeststhat other mechanisms such as in-stream processes or a time-variantrelease of DOC also played an important role.  相似文献   

3.
In Prince Edward Island, Canada, widespread intensive potato production has contributed to elevated nitrate concentrations in groundwater and streams, and eutrophic or anoxic conditions occur regularly in several estuarine systems. In this research, the stable isotopes of nitrogen and oxygen in nitrate in intertidal groundwater discharge and stream water were used, in conjunction with water quality and quantity data and land use information, to better understand the characteristics of nitrate delivered to two small estuaries with contrasting land use in their contributory catchments. Most of the water samples collected during the two-year study had isotopic signatures that fell in the range expected for nitrate derived from ammonium-based fertilizers (26.5 % of the samples) or in the overlapping range formed between ammonium-based fertilizers and nitrate derived from soil (64 % of the samples). Overall, isotopic signatures spanned over relatively narrow ranges, and correlations with other water quality parameters, or catchment characteristics, were weak. Nitrate in groundwater discharge and surface water in the Trout River catchment exhibited significantly different isotopic signatures only for the nitrogen isotope, while in the McIntyre Creek catchment groundwater discharge and surface water had similar isotopic signatures. When the isotopic results for the waters from the two catchments were compared, the surface waters were found to be similar, while the isotopic signatures of nitrate in groundwater were distinct only for the nitrogen isotope. Denitrification in the two study catchments was not evident based on the isotopic results for nitrate; however, in the case of the Trout River catchment, where a small freshwater pond exists, an average nitrate load reduction of 14 % was inferred based on a comparison of nitrate loads entering and leaving the pond. Overall, it appears that natural attenuation processes, occurring either in the streams or groundwater flow systems, do not significantly reduce nitrate loading to these estuaries.  相似文献   

4.
Water samples were collected from three sites located in the middle reach of the Njoro River, Kenya, and analysed for total phosphorus (TP), orthophosphate, ammonia‐nitrogen, and nitrate‐nitrogen to evaluate stressor sources (e.g. factories and wastewater ponds) and the general stream water quality. The stream surface water was also analysed for biochemical oxygen demand (BOD5) to provide an overview of organic matter loading. Mugo, Egerton Bridge and the canning factory sites of the Njoro River had low water quality which is likely to be due to poor farming, partially treated effluents and poor provision of sanitation facilities to the riparian communities. The concentrations of the selected nutrients did not differ significantly among the three sites, presumably due to pollution of the whole stream reach by the catchment nutrient sources. High phosphate concentrations (i.e. ~0.76 mgPO4 l?1 and ~0.87 mgTP l?1) at Canning Factory were recorded during the low flow dry season. Nitrate‐nitrogen concentrations varied significantly with water discharge which explained between 63 and 87% of the nutrient variability in the three sites. BOD5 differed significantly among the three sites, with historical effects of wastewater and factory effluent discharge being reflected in the results of Egerton Bridge and Canning Factory. The concentrations of ammonia‐nitrogen, TP and orthophosphate were higher in the wastewater than in the river water whereas nitrate‐nitrogen was lower. This study indicates that the Njoro River is stressed by nutrients from the activities within its catchment. With the increasing population, the nutrient load to the river will continue to increase and the water quality will continue to deteriorate. Reductions of nutrient loads into the river as well as provision of sanitation facilities to the riparian communities are needed to control further water degradation.  相似文献   

5.
Dissolved organic carbon (DOC) concentrations and export were studied in two small catchments in central Ontario to examine DOC sources and to assess the hypothesis that organic matter adjacent to the stream is a significant contributor of DOC during storms. Different DOC dynamics and exports were observed according to the depth of the riparian water table. In Harp 4-21, riparian flowpaths were predominantly through A and upper B soil horizons and riparian soils contributed between 73 and 84% of the stream DOC export during an autumn storm. In Harp 3A, riparian flowpaths were predominantly through lower B horizons. Consequently, riparian soils were less important and hillslopes contributed more than 50% of the stream DOC export in subcatchments without wetlands during storms. Wetlands and adjacent soils contributed significantly to DOC export in Harp 3A; 8% of the total catchment area exported 32 to 46% of the storm runoff DOC. DOC export dynamics in wetlands and riparian soils were distinctly different. In wetlands, transport was affected by leaching and flushing of DOC at the wetland surface leading to lower DOC concentrations with successive storms. In riparian soils, groundwater flowpaths were more important and stronger positive relationships between discharge and DOC concentration were observed. Precipitation, throughfall and stemflow were minor sources of stream DOC during storms and contributed less than 20% of the total export.  相似文献   

6.
Patterns of dissolved organic carbon (DOC) and nitrogen (DON) delivery were compared between times of stormflow and baseflow in Paine Run, an Appalachian stream draining a 12.4 km2 forested catchment in the Shenandoah National Park (SNP), Virginia. The potential in-stream ecological impact of altered concentrations and/or chemical composition of DOM during storms also was examined, using standardized bacterial bioassays. DOC and DON concentrations in Paine Run were consistently low during baseflow and did not show a seasonal pattern. During storms however, mean DOC and DON concentrations approximately doubled, with maximum concentrations occurring on the rising limb of storm hydrographs. The rapid response of DOM concentration to changes in flow suggests a near-stream or in-stream source of DOM during storms. Stormflow (4% of the time, 36% of the annual discharge) contributed >50% of DOC, DON and NO3 flux in Paine Run during 1997. In laboratory bacterial bioassays, growth rate constants were higher on Paine Run stormflow water than on baseflow water, but the fraction of total DOM which was bioavailable was not significantly different. The fraction of the total stream DOC pool taken up by water column bacteria was estimated to increase from 0.03 ± 0.02% h–1 during baseflow, to 0.15 ± 0.04% h–1 during storms. This uptake rate would have a minimal effect on bulk DOM concentrations in Paine Run, but storms may still have considerable impact on the bacterial stream communities by mobilizing them into the water column and by supplying a pulse of DOM.  相似文献   

7.
Water pathways through permeable riverbeds are multi-dimensional, including lateral hyporheic exchange flows as well as vertical (upwelling and downwelling) fluxes. The influence of different pathways of water on solute patterns and the supply of nitrate and other redox-sensitive chemical species in the riverbed is poorly understood but could be environmentally significant. For example, nitrate-rich upwelling water in the gaining reaches of groundwater-fed rivers has the potential to supply significant quantities of nitrate through the riverbed to surface waters, constraining opportunities to deliver the goals of the EU Water Framework Directive to achieve ‘good ecological status’. We show that patterns in porewater chemistry in the armoured river bed of a gaining reach (River Leith, Cumbria) reflect the spatial variability in different sources of water; oxic conditions being associated with preferential discharge from groundwater and reducing conditions with longitudinal and lateral fluxes of water due to water movement from riparian zones and/or hyporheic exchange flows. Our findings demonstrate the important control of both vertical and lateral water fluxes on patterns of redox-sensitive chemical species in the river bed. Furthermore, under stable, baseflow conditions (<Q90) a zone of preferential discharge, comprising 20 % of the reach by area contributes 4–9 % of the total nitrate being transported through the reach in surface water, highlighting the need to understand the spatial distribution of such preferential discharge locations at the catchment scale to establish their importance for nitrate delivery to the stream channel.  相似文献   

8.
Dissolved organic carbon (DOC) and total and inorganic nitrogen and phosphorus concentrations were determined over 3 years in headwater streams draining two adjacent catchments. The catchments are currently under different land use; pasture/grazing vs plantation forestry. The objectives of the work were to quantify C and nutrient export from these landuses and elucidate the factors regulating export. In both catchments, stream water dissolved inorganic nutrient concentrations exhibited strong seasonal variations. Concentrations were highest during runoff events in late summer and autumn and rapidly declined as discharge increased during winter and spring. The annual variation of stream water N and P concentrations indicated that these nutrients accumulated in the catchments during dry summer periods and were flushed to the streams during autumn storm events. By contrast, stream water DOC concentrations did not exhibit seasonal variation. Higher DOC and NO3 concentrations were observed in the stream of the forest catchment, reflecting greater input and subsequent breakdown of leaf-litter in the forest catchment. Annual export of DOC was lower from the forested catchment due to the reduced discharge from this catchment. In contrast however, annual export of nitrate was higher from the forest catchment suggesting that there was an additional NO3 source or reduction of a NO3 sink. We hypothesize that the denitrification capacity of the forested catchment has been significantly reduced as a consequence of increased evapotranspiration and subsequent decrease in streamflow and associated reduction in the near stream saturated area.  相似文献   

9.
1. Groundwater fluxes of nitrogen and dissolved organic carbon (DOC) were investigated in Grape Vine Canyon Stream in the Mojave Desert focusing on the rate of inputs and the fate of groundwater-derived nutrients in the stream. Discharge rates from different ground waters were measured using an end-member mixing model coupled with injections of a conservative solute tracer into the stream channel.
2. In surface water, nitrate concentration averaged 1.13 mg N L–1 and DOC concentration averaged 1.82 mg C L–1.
3. Groundwater discharge into Grape Vine Canyon Stream was derived from three sources. Nitrate concentration varied among the three groundwater sources with mean concentrations of 0.56, 0.94 and 0.08 mg N L–1. DOC, in contrast, did not vary among ground water sources, with an overall average concentration of 2.96 mg C L–1.
4. In the surface stream, nitrate concentration was two-fold greater than the concentration predicted from groundwater input, indicating that in-stream processes generated nitrate. Stream DOC concentration was lower than predicted based upon groundwater input rate. The production of nitrate and loss of DOC suggest that DOC is lost through mineralisation of dissolved organic matter, possibly resulting in the mineralisation of dissolved organic nitrogen to ammonium and subsequent transformation to nitrate via nitrification. In further support of this hypothesised linkage, DOC loss explained 80–89% of the variance in nitrate production in Grape Vine Canyon Stream.  相似文献   

10.
1. Assessment of the role of landscape structures such as buffers is a necessary prerequisite for the sustainable management of water resources in an agricultural setting. 2. We monitored nitrate concentrations during interstorm periods at the outlet of 16 subcatchments of different orders within a catchment of 378 km2. We characterised stream network, wetlands, agricultural practices and land cover and identified their relationships with nitrate fluxes and concentrations. 3. Two main factors controlled annual nitrate fluxes: the agricultural nitrogen surplus and the nature of the system comprising the wetland zone and adjoining watercourses. In the latter case, nitrate fluxes were reduced in proportion to the surface area of the riparian wetland and the flowpath distance of fluxes in the stream network. At the scale of the order‐6 stream, 53% of annual nitrate flux during interstorm periods was removed during transfer via the wetland and the river, corresponding to 21.1 kg N ha?1 per year. 4. The influence of the riparian wetland zone/watercourse system increased during periods of low water level, explaining up to 64% of nitrate concentration variation among locations within the river network, but only 9% during periods of high water level. 5. The buffering role was stronger at higher stream orders, and the dependence on stream order was more apparent at low water level, when we observed mean nitrate concentrations in the order‐6 stream that were 47% lower than observed in order‐2 or order‐3 streams.  相似文献   

11.
We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and groundwater fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and in 23 in-stream piezometers, respectively. Surface water nitrate concentration in Emmons Creek was relatively high (mean of 2.25 mg NO3?CN l?1) and exhibited strong seasonal variation. Net nitrate retention averaged 429 mg NO3?CN m?2 d?1 and about 2% of nitrate inputs to the reach. Net nitrate retention was highest during the spring and autumn when groundwater discharge was elevated. Groundwater discharge explained 57?C65% of the variation in areal net nitrate retention. Specific discharge and groundwater nitrate concentration varied spatially. Weighting groundwater solute concentrations by specific discharge improved the water balance and resulted in higher estimates of nitrate retention. Our results suggest that groundwater inputs of nitrate can drive nitrate retention in streams with high groundwater discharge.  相似文献   

12.
The influence of riffle-pool units on hyporheic zone hydrology and nitrogen dynamics was investigated in Brougham Creek, a N-rich agricultural stream in Ontario, Canada. Subsurface hydraulic gradients, differences in background stream and groundwater concentrations of conservative ions, and the movement of a bromide tracer indicated the downwelling of stream water at the head of riffles and upwelling in riffle-pool transitions under base flow conditions. Channel water also flowed laterally into the floodplain at the upstream end of riffles and followed a subsurface concentric flow path for distances of up to 20 m before returning to the stream at the transition from riffles to pools. Differences in observed vs predicted concentrations based on background chloride patterns indicated that the hyporheic zone was a sink for nitrate and a source for ammonium. The removal of nitrate in the streambed was confirmed by the loss of nitrate in relation to co-injected bromide in areas of downwelling stream water in two riffles. Average stream water nitrate-N concentrations of 1.0 mg/L were often depleted to <0.005 mg/L near the sediment-water interface. Consequently, an extensive volume of the hyporheic zone in the streambed and floodplain had a large unused potential for nitrate removal. Conceptual models based mainly on studies of streams with low nutrient concentrations have emphasized the extent of surface-subsurface exchanges and water residence times in the hyporheic zone as important controls on stream nutrient retention. In contrast, we suggest that nitrate retention in N-rich streams is influenced more by the size of surface water storage zones which increase the residence time of channel water in contact with the major sites of rapid nitrate depletion adjacent to the sediment-water interface.  相似文献   

13.
The flowpaths by which water moves from watersheds to streams has important consequences for the runoff dynamics and biogeochemistry of surface waters in the Amazon Basin. The clearing of Amazon forest to cattle pasture has the potential to change runoff sources to streams by shifting runoff to more surficial flow pathways. We applied end-member mixing analysis (EMMA) to 10 small watersheds throughout the Amazon in which solute composition of streamwater and groundwater, overland flow, soil solution, throughfall and rainwater were measured, largely as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia. We found a range in the extent to which streamwater samples fell within the mixing space determined by potential flowpath end-members, suggesting that some water sources to streams were not sampled. The contribution of overland flow as a source of stream flow was greater in pasture watersheds than in forest watersheds of comparable size. Increases in overland flow contribution to pasture streams ranged in some cases from 0% in forest to 27?C28% in pasture and were broadly consistent with results from hydrometric sampling of Amazon forest and pasture watersheds that indicate 17- to 18-fold increase in the overland flow contribution to stream flow in pastures. In forest, overland flow was an important contribution to stream flow (45?C57%) in ephemeral streams where flows were dominated by stormflow. Overland flow contribution to stream flow decreased in importance with increasing watershed area, from 21 to 57% in forest and 60?C89% in pasture watersheds of less than 10?ha to 0% in forest and 27?C28% in pastures in watersheds greater than 100?ha. Soil solution contributions to stream flow were similar across watershed area and groundwater inputs generally increased in proportion to decreases in overland flow. Application of EMMA across multiple watersheds indicated patterns across gradients of stream size and land cover that were consistent with patterns determined by detailed hydrometric sampling.  相似文献   

14.
Seasonal variations of dissolved inorganic nitrogen (DIN) (NO3–N and NH4–N) and dissolved organic nitrogen (DON) were determined in Fuirosos, an intermittent stream draining an unpolluted Mediterranean forested catchment (10.5 km2) in Catalonia (Spain). The influence of flow on streamwater concentrations and seasonal differences in quality and origin of dissolved organic matter, inferred from dissolved organic carbon to nitrogen ratios (DOC:DON ratios), were examined. During baseflow conditions, nitrate and ammonium had opposite behaviour, probably controlled by biological processes such as vegetation uptake and mineralization activity. DON concentrations did not have a seasonal trend. During storms, nitrate and DON increased by several times but discharge was not a good predictor of nutrient concentrations. DOC:DON ratios in streamwater were around 26, except during the months following drought when DOC:DON ratios ranged between 42 and 20 during baseflow and stormflow conditions, respectively. Annual N export during 2000–2001 was 70 kg km−1 year−1, of which 75% was delivered during stormflow. The relative contribution of nitrogen forms to the total annual export was 57, 35 and 8% as NO3–N, DON and NH4–N, respectively.  相似文献   

15.
A better understanding of nitrate removal mechanisms is important for managing the water quality function of stream riparian zones. We examined the linkages between hydrologic flow paths, patterns of electron donors and acceptors and the importance of denitrification as a nitrate removal mechanism in eight riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Nitrate-N concentrations in shallow groundwater from adjacent cropland declined from levels that were often 10–30 mg L–1 near the field-riparian edge to < 1 mg L–1 in the riparian zones throughout the year. Chloride data suggest that dilution cannot account for most of this nitrate decline. Despite contrasting hydrogeologic settings, these riparian zones displayed a well-organized pattern of electron donors and acceptors that resulted from the transport of oxic nitrate-rich groundwater to portions of the riparian zones where low DO concentrations and an increase in DOC concentrations were encountered. The natural abundances of d15N and in situ acetylene injection to piezometers indicate that denitrification is the primary mechanism of nitrate removal in all of the riparian zones. Our data indicate that effective nitrate removal by denitrification occurs in riparian zones with hydric soils as well as in non-hydric riparian zones and that a shallow water table is not always necessary for efficient nitrate removal by denitrification. The location of hot spots of denitrification within riparian areas can be explained by the influence of key landscape variables such as slope, sediment texture and depth of confining layers on hydrologic pathways that link supplies of electron donors and acceptors.  相似文献   

16.
Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2–3 g C m?2) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m?2), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and increasing catchment DOC export.  相似文献   

17.
Water sources of Eucalyptus camaldulensis Dehn. trees were investigated on a semiarid floodplain in south-eastern Australia. The trees investigated ranged in distance from 0.5 to 40 m from a stream, with electrical conductivity 0.8 dSm–1, and grew over groundwater with electrical conductivity ranging from 30 to 50 dSm–1. The sources of water being used by the trees were investigated using the naturally occurring stable isotopes of water and measurements of soil water potential. Xylem water potential and leaf conductance were also examined to identify the trees' response to using these sources of water. Trees at distances greater than about 15 m from the stream used no stream water. The trees used groundwater in summer and a combination of groundwater and rain-derived surface-soil water (0.05–0.15 m depth) in winter. In doing so they suffered water stress at electrical conductivities higher than approximately 40 dSm–1 (equivalent to approximately –1.4 MPa). Trees adjacent to the stream used stream water directly in summer, but may have used stream water from the soil profile in winter, after the stream had risen and recharged the soil water. E. camaldulensis appeared to be partially opportunistic in the sources of water they used.  相似文献   

18.
The practical implementation of the European Water Framework Directive has resulted in an increased focus on the hyporheic zone. In this paper, an integrated model was developed for evaluating the impact of point sources in groundwater on human health and surface water ecosystems. This was accomplished by coupling the system dynamics-based decision support system CARO-PLUS to the aquatic ecosystem model AQUATOX using an analytical volatilization model for the stream. The model was applied to a case study where a trichloroethylene (TCE)-contaminated groundwater plume is discharging to a stream. The TCE source will not be depleted for many decades; however, measured and predicted TCE concentrations in surface water were found to be below human health risk management targets. Volatilization rapidly attenuates TCE concentrations in surface water. Thus, only a 30-m stream reach fails to meet surface water quality criteria. An ecological risk assessment found that the TCE contamination did not impact the stream ecosystem. Uncertainty assessment revealed hydraulic conductivity to be the most important site-specific parameter. These results indicate that contaminant plumes with μg L?1 concentrations of TCE entering surface water systems may not pose a significant risk.  相似文献   

19.
Johnson DW 《Oecologia》2008,155(1):43-52
The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees—soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using δ18O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000–30,000 mg L−1.  相似文献   

20.
Seasonal variability of dissolved organic carbon ina Mediterranean stream   总被引:1,自引:0,他引:1  
The seasonal variability of dissolved organic carbon(DOC) flux in a Mediterranean stream subjected todischarges of wide range of intensities and variabledry period was studied as a function of the hydrologicconditions, and the relationship between surface andsubsurface (hyporheic and groundwater) DOCconcentration. DOC concentration in stream water(2.6 mg l–1 ±1.5 SD) was higher thangroundwater (1.3 mg l–1 ± 1.2 SD) and lower thanhyporheic water (3.8 mg l–1 ±1.7 SD),suggesting that, at baseflow, stream DOC concentrationincreases when groundwater discharges through thehyporheic zone. Storms contributed to 39% of annualwater export and to 52% of the total annual DOCexport (220 kg km–2). A positive relationship wasobserved between Discharge (Q) and stream DOCconcentration. Discharge explained only 40% of theannual variance in stream DOC, but explained up to93% of the variance within floods. The rate of streamDOC changes with discharge change during storms (dDOC/dQ), ranged between 0 and 0.0045 C mgl–1 s l–1, with minimum values during Springand Summer, and maxima values in Fall and Winter.These dynamics suggest that storm inputs ofterrigenous DOC vary between seasons. During floods inthe dormant season, DOC recession curves were alwayssteeper than discharge decline, suggesting shortflushing of DOC from the leaching of fresh detritusstored in the riparian zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号