首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Recent data on the binding of Ca2+ to the specific sites on troponin, alone, in regulated actin, and in regulated actomyosin, as well as data on the Ca2+ activation of the actomyosin ATPase (Grabarek, Z., J. Grabarek, P.C. Leavis, and J. Gergely, 1983, J. Biol. Chem., 258:14098-14102.), are analyzed on the basis of a model used previously for qualitative theoretical studies of the Ca2+ activation of muscle contraction (Shiner and Solaro, 1982). The data allow and require an extension of the model to consider the effects of tropomyosin explicitly. Three major results of the analysis are at variance with previous investigations. A repulsive interaction between tropomyosins; and an attractive interaction between actins (or myosin heads attached to actin) are found, whereas others have found or assumed an attractive tropomyosin-tropomyosin interaction and no actin-actin interaction. The parameter values found here predict hysteresis under the conditions of the ATPase experiments; no other existing model for the interactions manifest in the Ca2+ activation of contraction can predict hysteresis. The prediction is of increased interest in light of experimental reports of hysteresis in the Ca2+ activation of isometric force (Ridgeway, E. B., A. M. Gordon, and D. A. Martyn, 1983, Science (Wash. DC), 219:1075-1077; Gordon, A. M., E. B. Ridgeway, and D. A. Martyn, 1984, Plenum Publishing Corp., New York, 553-563; Brandt, P. W., B. Gluck, M. Mini, and C. Cerri, 1985, J. Mus. Res. Cell Motil. 6:197-205.).  相似文献   

6.
M Walsh  F C Stevens 《Biochemistry》1978,17(19):3924-3928
Methionine residues have been implicated in the activation of cyclic nucleotide phosphodiesterase by the Ca2+-dependent protein modulator [Walsh, M., & Stevens, F.C. (1977) Biochemistry 16,2742-2749]. Treatment of the modulator with N-chlorosuccinimide in the presence of Ca2+ resulted in selective oxidation of methionine residues at positions 71,72, 76, and, possibly, 109 in the modulator sequence. These residues lie on the surface of the molecule exposed to solvent. This modification has several effects on the modulator protein: (1) the Ca2+-binding properties of the oxidized modulator are changed with apparent loss of high-affinity binding sites, (2) the oxidized protein no longer interacts with phosphodiesterase, and (3) troponin C like activities, viz., Ca2+-dependent change in mobility on urea-polyacrylamide gel electrophoresis and formation of a urea-stable complex with troponin I, are lost upon oxidation of the modulator. The phosphodiesterase binding domain of the modulator protein appears to be located between the second and third Ca2+-binding loops, a region of the molecule known from previous partial proteolysis studies [Walsh, M., Stevens, F.C., Kuznicki, J., & Drabikowski, W.(1977), J. Biol. Chem. 252, 7440-7443] to be exposed in the presence of Ca2+.  相似文献   

7.
8.
9.
The Ca(2+)-dependent K+ channel of human red cells was inhibited with high affinity by several imidazole antimycotics which are potent inhibitors of cytochrome P-450. IC50 values were (in microM): clotrimazole, 0.05; tioconazole, 0.3; miconazole, 1.5; econazole, 1.8. Inhibition of the channel was also found with other drugs with known cytochrome P-450 inhibitory effect. However, no inhibition was obtained with carbon monoxide (CO). This suggests that, given the high selectivity of the above inhibitors for the heme moiety, a different but closely related to cytochrome P-450 kind of hemoprotein may be involved in the regulation of the red cell Ca(2+)-dependent K+ channel. Clotrimazole also inhibited two other charybdotoxin-sensitive Ca(2+)-dependent K+ channels, those of rat thymocytes (IC50 = 0.1-0.2 microM) and of Ehrlich ascites tumor cells (IC50 = 0.5 microM). Imidazole antimycotics inhibit also receptor-operated Ca2+ channels (Montero, M., Alvarez, J. and García-Sancho, J. (1991) Biochem. J. 277, 73-79). This suggests that both Ca2+ and Ca(2+)-dependent K+ channels might have a similar regulatory mechanism involving a cytochrome.  相似文献   

10.
Synthetic peptides corresponding to the calmodulin-binding domain of the human erythrocyte Ca2+ pump were prepared representing residues 2-29 (C28W), 2-21 (C20W), 2-16 (C15W), and 16-29 (C14) of the sequence (James, P., Maeda, M., Fisher, R., Verma, A. K., Krebs, J., Penniston, J. T., and Carafoli, E. (1988) J. Biol. Chem. 263, 2905-2910). Peptides C28W, C20W, and C15W bound to calmodulin with an apparent 1:1 stoichiometry in the presence of Ca2+ and inhibited the activation of the Ca2+ pump by calmodulin, while C14 was ineffective. Substituting tyrosine (C28Y) or alanine (C28A) for the tryptophan residue lowered the affinity for calmodulin. The estimated Kd values for the calmodulin-peptide complexes were 0.1 nM for C28W, 5-15 nM for C20W, C28Y, and C28A, and 700-1700 nM for C15W. The Ca2+ pump in inside-out erythrocyte membrane vesicles was activated by proteolytic removal of the endogenous calmodulin-binding domain. Addition of C20W or C28W then inhibited calmodulin-independent Ca2+ transport, while a calmodulin-binding peptide from another enzyme had no effect. The inhibition of the pump by C20W was purely competitive with Ca2+, while C28W decreased the Vmax and increased the K1/2 for Ca2+, restoring the pump activity nearly to its low basal level. The results suggest that a calmodulin-binding peptide from any enzyme has two kinds of specificity: it shares with peptides from other enzymes the ability to bind to calmodulin, but only it has the specificity to interact with its own (proteolytically activated) enzyme.  相似文献   

11.
Several conflicting reports have been made regarding the affinity of myosin heads (subfragment 1 and heavy meromyosin (HMM) for regulated actin (actin complexed with tropomyosin and troponin) at low ionic strength (mu = 18-50 mM) and whether or not this interaction is Ca2+ sensitive (Chalovich, J. M., and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437; Chalovich, J. M., and Eisenberg, E. (1984) Biophys. J. 45, 221a; Wagner, P. D., and Stone, D. B. (1983) Biochemistry 22, 1334-1342; and Wagner, P. D. (1984) Biochemistry 23, 5950-5956). Since the low ionic strengths used in the above studies do not represent the physiological ionic strength under which intact muscle exhibits Ca2+-dependent tension development, we investigated the possibility of whether a Ca2+-dependent regulated actin-HMM interaction could be observed at physiological ionic strength (mu = 134 mM, pH 7.4) and in the presence of ATP (at 23-24 degrees C). Direct binding of HMM to varied concentrations of regulated actin (87.7-221 microM free actin) was measured by sedimentation in an air-driven ultracentrifuge. Under the above conditions, we found that the regulated actin activation of HMM-Mg2+-ATPase was about 94% inhibited in the absence of Ca2+ although the association constant (Ka) is only moderately affected in the presence of Ca2+. These results are similar to those obtained by Chalovich and Eisenberg (1982 and 1984) with subfragment 1 and HMM, respectively, at low ionic strength and support their suggestion that in solution tropomyosin-troponin may not act totally by physically blocking the formation of cross-bridges with actin, but instead may act to inhibit a kinetic step in the overall ATPase rate. Whether this holds true in more intact systems (e.g. myosin, thick filaments) remains to be determined. Our results also show a good correlation between levels of ATPase activation and HMM binding by unregulated actin and in regulated actin in the presence of Ca2+.  相似文献   

12.
Using [U-14C]phosphatidylinositol as substrate, Ca2+-dependent phospholipase C activity was detected in a group of bovine adrenal medullary proteins that bind to chromaffin granule membranes in the presence of Ca2+ ("chromobindins," Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J. (1983) J. Biol. Chem. 258, 14664-14674). The activity was maximal at neutral pH and represented an 80- to 240-fold enrichment of adrenal medullary cytosol phospholipase C activity measured at pH 7.3. The stimulation of activity by Ca2+ was complex; no activity was present in the absence of Ca2+, 25% activation occurred at 1 microM Ca2+, and full activation at 5 mM Ca2+. The enzyme bound to chromaffin granule membranes in the presence of 2 mM Ca2+ but was released at 40 microM Ca2+, suggesting that intrinsic enzyme activity may be regulated by [Ca2+] at 1 microM, but additional activation at higher concentrations of Ca2+ is seen in vitro as a result of Ca2+-dependent binding of the active enzyme to substrate-containing membranes. This enzyme may generate diacylglycerol and phosphorylated inositol to act as intracellular messengers in the vicinity of the chromaffin granule membrane during the process of exocytosis.  相似文献   

13.
14.
Agonist and antagonist properties of calmodulin fragments   总被引:10,自引:0,他引:10  
Limited proteolysis of calmodulin with trypsin in the presence of ethylene glycol bis(beta-aminoethyl ether)-N, N,N',N'-tetracetic acid (EGTA) or Ca2+ was performed according to a modification of the method of Drabikowski et al. (Drabikowski, W., Kuznicki, J., and Grabarek, Z. (1977) Biochim. Biophys. Acta 485, 124-133). The resulting peptides were purified by reverse-phase high performance liquid chromatography. Tryptic digests in EGTA yielded peptides 1-106, 1-90, and 107-148 with yields of 9, 47, and 61%, respectively. The digests performed with Ca2+ yielded peptides 1-77 and 78-148 in 35 and 45% yield. Analysis by high performance liquid chromatography indicated that the purified fragments contained less than 0.1% contamination by calmodulin, thus allowing a definitive study of the ability of these fragments to activate, or interact with, calmodulin-regulated enzymes and anti-calmodulin drugs. Each of the fragments, except 107-148, bound to a phenothiazine affinity column in a Ca2+-dependent manner. Thus, calmodulin contains two interaction sites for phenothiazines: one on the NH2-terminal half (fragment 1-77) and one on the COOH-terminal half (fragment 78-148). None of the fragments activates the protein phosphatase, calcineurin, or prevents its stimulation by calmodulin, nor does any of the fragments stimulate Ca2+-dependent cAMP phosphodiesterase. A single cleavage in the middle of the calmodulin molecule results in the rapid dissociation of the two resultant fragments and a loss of ability to activate cAMP phosphodiesterase. One fragment, 78-148, interacts with phosphodiesterase and prevents its activation by calmodulin (Ki: 1.5 +/- 0.4 X 10(-6) M). The same fragment, 78-148, can fully activate phosphorylase kinase but with a lower affinity than calmodulin (Kuznicki, J., Grabarek, Z., Brzeska, H., Drabikowski, W., and Cohen, P. (1981) FEBS Lett. 130, 141-145). Thus, peptide 78-148 behaves as a calmodulin agonist or antagonist or as neither, depending on the enzyme under study.  相似文献   

15.
Ca2+-dependent phospholipases A require Ca2+ concentrations in the millimolar range for optimal activity toward artificial substrates. Because Ca2+-dependent phospholipases A2 degrade the phospholipids of Escherichia coli, treated with the membrane-active antibiotic polymixin B equally well with and without added Ca2+ (Weiss, J., Beckerdite-Quagliata, S., and Elsbach, P. (1979) J. Biol. Chem. 254, 11010-11014), we have examined the possibility that intramembrane Ca2+ can provide the Ca2+ needed for phospholipase action. We studied the effect of Ca2+ depletion on the hydrolysis of the phospholipids of polymixin B-killed E. coli by 1) added pig pancreas phospholipase A2 in E. coli S17 (a phospholipase A-lacking mutant) and 2) endogenous Ca2+-dependent phospholipase A1 in the parent strain E. coli S15. Transfer of E. coli from nutrient broth (Ca2+ concentration approximately 3 X 10(-5) M) to Ca2+-depleted medium (Ca2+ concentration less than 10(-6)M) reduced polymixin B-induced hydrolysis by 50-75%, in parallel with a reduction of bacterial Ca2+ from 19.6 +/- 2.8 to 3.9 +/- 0.6 nmol (mean +/- standard error) per 3 X 10(10) bacteria. The bacterial Ca2+ content was repleted and the sensitivity of the bacterial phospholipids to hydrolysis by both exogenous phospholipase A2 (E. coli S17) and endogenous phospholipase A (E. coli S15) was restored by adding Ca2+ back to the suspensions. Complete restoration occurred at low Ca2+ levels in the reaction mixture (3 X 10(-5) - 10(-4) M) and required time, suggesting that hydrolysis was restored because bacterial Ca2+ stores were gradually replenished and not because extracellular Ca2+ concentrations were raised to levels that were still at least 10X lower than needed for optimal phospholipase A activity. This conclusion is supported by the finding that Ca2+ depletion or addition caused respectively decreased and increased release of lipopolysaccharides by EGTA (ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid), suggesting that the bacterial Ca2+ pool bound to lipopolysaccharides in the outer membrane shrinks or expands depending on extracellular Ca2+ levels. Thus, the cationic membrane-disruptive polymixin B, thought to compete with Mg2+ and Ca2+ for the same anionic sites on lipopolysaccharides, may liberate the Ca2+ near where the phospholipids are exposed to phospholipase.  相似文献   

16.
17.
18.
Addition of a phosphoethanolamine (pEtN) moiety to the outer 3-deoxy-D-manno-octulosonic acid (Kdo) residue of lipopolysaccharide (LPS) in WBB06, a heptose-deficient Escherichia coli mutant, occurs when cells are grown in 5-50 mM CaCl2 (Kanipes, M. I., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 1156-1163). A Ca2+-induced, membrane-bound enzyme was responsible for the transfer of the pEtN unit to the Kdo domain. We now report the identification of the gene encoding the pEtN transferase. E. coli yhjW was cloned and overexpressed, because it is homologous to a putative pEtN transferase implicated in the modification of the beta-chain heptose residue of Neisseria meningitidis lipo-oligosaccharide (Mackinnon, F. G., Cox, A. D., Plested, J. S., Tang, C. M., Makepeace, K., Coull, P. A., Wright, J. C., Chalmers, R., Hood, D. W., Richards, J. C., and Moxon, E. R. (2002) Mol. Microbiol. 43, 931-943). In vitro assays with Kdo2-4'-[32P]lipid A as the acceptor showed that YhjW (renamed EptB) utilizes phosphatidylethanolamine in the presence of Ca2+ to transfer the pEtN group. Stoichiometric amounts of diacylglycerol were generated during the EptB-catalyzed transfer of pEtN to Kdo2-lipid A. EptB is an inner membrane protein of 574 amino acid residues with five predicted trans-membrane segments within its N-terminal region. An in-frame replacement of eptB with a kanamycin resistance cassette rendered E. coli WBB06 (but not wild-type W3110) hypersensitive to CaCl2 at 5 mM or higher. Ca2+ hypersensitivity was suppressed by excess Mg2+ in the medium or by restoring the LPS core of WBB06. The latter was achieved by reintroducing the waaC and waaF genes, which encode LPS heptosyl transferases I and II, respectively. Our data demonstrate that pEtN modification of the outer Kdo protected cells containing heptose-deficient LPS from damage by high concentrations of Ca2+. Based on its sequence similarity to EptA(PmrC), we propose that the active site of EptB faces the periplasmic surface of the inner membrane.  相似文献   

19.
Ca2+ is required for the maintenance of high rates of translational initiation in GH3 pituitary cells (Chin, K.-V., Cade, C., Brostrom, C.O., Galuska, E.M., and Brostrom, M.A. (1987) J. Biol. Chem. 262, 16509-16514). Following thermal stress at 46 degrees C or chemical stress from exposure to sodium arsenite or 8-hydroxyquinoline, rates of amino acid incorporation in Ca2+-restored GH3 cells were reduced acutely to those of unstressed, Ca2+-depleted control preparations. Sodium arsenite treatment resulted in loss of ability to accumulate polysomes in response to Ca2+. Stressed cells allowed to recover for 2-8 h either with or without Ca2+ in the medium exhibited comparable, increasing rates of amino acid incorporation and the induction of heat shock proteins (hsp). Abolition of the Ca2+-dependent component of translation was proportional to the intensity of the stress. Mild thermal stress (41 degrees C) resulted in the induction of hsp 68 and the retention of Ca2+-dependent protein synthesis; hsp 68 was synthesized in a Ca2+-dependent manner. After arsenite stress, restoration of the Ca2+ requirement for protein synthesis occurred by 24 h, and was preceded by a transitional period during which polysomes accumulated in response to Ca2+ without concomitant increased rates of incorporation. Responses to stress are proposed to include an acute inhibition of normal protein synthesis involving the destruction of Ca2+-stimulated initiation and a protracted period of recovery involving synthesis of the hsp accompanied by Ca2+-independent amino acid incorporation and slowed peptide chain elongation.  相似文献   

20.
Flow microcalorimetric titrations of calmodulin with seminalplasmin at 25 degrees C revealed that the high affinity one-to-one complex in the presence of Ca2+ (Comte, M., Malnoe, A., and Cox, J. A. (1986) Biochem. J. 240, 567-573) is entirely enthalpy-driven (delta H0 = -50 kJ.mol-1; delta S0 = O J.K-1.mol-1; delta Cp0 = O J.K-1.mol-1) and is not influenced by the proton or Mg2+ concentration. The Sr2+- and Cd2+-promoted high affinity complexes are also exothermic for -49 and -45 kJ.mol-1, respectively. The observed low affinity interaction in the absence of divalent ions displays no enthalpy change. No enthalpy changes are observed when calmodulin and seminalplasmin are mixed in the presence of millimolar concentrations of Mg2+, Zn2+, or Mn2+. Enthalpy titrations of the 1:1 calmodulin-seminalplasmin complex with Ca2+ and of partly Ca2+-saturated calmodulin with seminalplasmin revealed that only the species calmodulin.Can greater than or equal to 2 is fully competent for high affinity interaction with seminalplasmin. Binding of the second Ca2+ is strongly enhanced (K2 greater than or equal to 5 X 10(7) M-1) as compared to that in free calmodulin (K2 = 2.6 X 10(5) M-1). This is essentially due to the concomitant strongly exothermic step of isomerization of the calmodulin-seminalplasmin complex from its low to its high affinity form. Binding of the remaining two Ca2+ to the high affinity seminalplasmin-calmodulin complex displays the same affinity constants and endothermic enthalpy change as in free calmodulin. A microcalorimetric study on the complex formation between Ca2+-saturated calmodulin and turkey gizzard myosin light chain kinase revealed that the interaction is strongly exothermic with an important overall gain of order (delta H0 = -85 kJ.mol-1; delta S0 = -122 J.K-1.mol-1) and occurs with significant proton uptake (0.44 H+ per mol at pH 7.5). The observed low affinity interaction (K = 2.2 X 10(5) M-1) in the absence of Ca2+ (Mamar-Bachi, A., and Cox, J. A. (1987) Cell Calcium 8, 473-482) displays neither a change in enthalpy nor in protonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号