首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
ER stress signaling by regulated splicing: IRE1/HAC1/XBP1   总被引:12,自引:0,他引:12  
  相似文献   

3.
4.
5.
Cells respond to accumulation of misfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR) signaling pathway. The UPR restores ER homeostasis by degrading misfolded proteins, inhibiting translation, and increasing expression of chaperones that enhance ER protein folding capacity. Although ER stress and protein aggregation have been implicated in aging, the role of UPR signaling in regulating lifespan remains unknown. Here we show that deletion of several UPR target genes significantly increases replicative lifespan in yeast. This extended lifespan depends on a functional ER stress sensor protein, Ire1p, and is associated with constitutive activation of upstream UPR signaling. We applied ribosome profiling coupled with next generation sequencing to quantitatively examine translational changes associated with increased UPR activity and identified a set of stress response factors up-regulated in the long-lived mutants. Besides known UPR targets, we uncovered up-regulation of components of the cell wall and genes involved in cell wall biogenesis that confer resistance to multiple stresses. These findings demonstrate that the UPR is an important determinant of lifespan that governs ER stress and identify a signaling network that couples stress resistance to longevity.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Onn Brandman  Jen Liou  Wei Sun Park  Tobias Meyer 《Cell》2007,131(7):1327-1339
Deviations in basal Ca2+ levels interfere with receptor-mediated Ca2+ signaling as well as endoplasmic reticulum (ER) and mitochondrial function. While defective basal Ca2+ regulation has been linked to various diseases, the regulatory mechanism that controls basal Ca2+ is poorly understood. Here we performed an siRNA screen of the human signaling proteome to identify regulators of basal Ca2+ concentration and found STIM2 as the strongest positive regulator. In contrast to STIM1, a recently discovered signal transducer that triggers Ca2+ influx in response to receptor-mediated depletion of ER Ca2+ stores, STIM2 activated Ca2+ influx upon smaller decreases in ER Ca2+. STIM2, like STIM1, caused Ca2+ influx via activation of the plasma membrane Ca2+ channel Orai1. Our study places STIM2 at the center of a feedback module that keeps basal cytosolic and ER Ca2+ concentrations within tight limits.  相似文献   

14.
Endoplasmic reticulum (ER) stress in the budding yeast Saccharomyces cerevisiae triggers Ca2+ influx through a plasma membrane channel composed of Cch1 and Mid1. This response activates calcineurin, which helps to prevent cell death during multiple forms of ER stress, including the response to azole-class antifungal drugs. Herein, we show that ER stress activates the cell integrity mitogen-activate protein kinase cascade in yeast and that the activation of Pkc1 and Mpk1 is necessary for stimulation of the Cch1-Mid1 Ca2+ channel independent of many known targets of Mpk1 (Rlm1, Swi4, Swi6, Mih1, Hsl1, and Swe1). ER stress generated in response to miconazole, tunicamycin, or other inhibitors also triggered a transient G2/M arrest that depended upon the Swe1 protein kinase. Calcineurin played little role in the Swe1-dependent cell cycle arrest and Swe1 had little effect on calcineurin-dependent avoidance of cell death. These findings help to clarify the interactions between Mpk1, calcineurin, and Swe1 and suggest that the calcium cell survival pathway promotes drug resistance independent of both the unfolded protein response and the G2/M cell cycle checkpoint.  相似文献   

15.
内质网应激激活的未折叠蛋白反应(Unfolded protein response,UPR)途径在酿酒酵母和哺乳动物细胞中是非常保守的。内质网(Endoplasmic reticulum,ER)是蛋白质合成、折叠和修饰的细胞器,也是贮存钙的主要场所之一。酵母细胞内质网钙平衡与UPR的作用是相互的;两个MAPK途径——HOG途径和CWI途径都是细胞应答内质网应激压力时生存所必需的;重金属镉离子能够激活UPR途径,它通过激活钙离子通道Cch1/Mid1进入细胞影响钙离子的功能。本文结合最新研究进展对酿酒酵母细胞中的两个MAPK途径、镉离子和钙离子稳态与内质网应激激活的UPR途径之间相互关系进行综述。  相似文献   

16.
17.
18.
Imbalance in protein homeostasis in specific subcellular organelles is alleviated through organelle‐specific stress response pathways. As a canonical example of stress activated pathway, accumulation of misfolded proteins in ER activates unfolded protein response (UPR) in almost all eukaryotic organisms. However, very little is known about the involvement of proteins of other organelles that help to maintain the cellular protein homeostasis during ER stress. In this study, using iTRAQ‐based LC–MS approach, we identified organelle enriched proteins that are differentially expressed in yeast (Saccharomyces cerevisiae) during ER stress in the absence of UPR sensor Ire1p. We have identified about 750 proteins from enriched organelle fraction in three independent iTRAQ experiments. Induction of ER stress resulted in the differential expression of 93 proteins in WT strains, 40 of which were found to be dependent on IRE1. Our study reveals a cross‐talk between ER‐ and mitochondrial proteostasis exemplified by an Ire1p‐dependent induction of Hsp60p, a mitochondrial chaperone. Thus, in this study, we show changes in protein levels in various organelles in response to ER stress. A large fraction of these changes were dependent on canonical UPR signalling through Ire1, highlighting the importance of interorganellar cross‐talk during stress.  相似文献   

19.
The unfolded protein response (UPR) is an intracellular signaling pathway that counteracts variable stresses that impair protein folding in the endoplasmic reticulum (ER). As such, the UPR is thought to be a homeostat that finely tunes ER protein folding capacity and ER abundance according to need. The mechanism by which the ER stress sensor Ire1 is activated by unfolded proteins and the role that the ER chaperone protein BiP plays in Ire1 regulation have remained unclear. Here we show that the UPR matches its output to the magnitude of the stress by regulating the duration of Ire1 signaling. BiP binding to Ire1 serves to desensitize Ire1 to low levels of stress and promotes its deactivation when favorable folding conditions are restored to the ER. We propose that, mechanistically, BiP achieves these functions by sequestering inactive Ire1 molecules, thereby providing a barrier to oligomerization and activation, and a stabilizing interaction that facilitates de-oligomerization and deactivation. Thus BiP binding to or release from Ire1 is not instrumental for switching the UPR on and off as previously posed. By contrast, BiP provides a buffer for inactive Ire1 molecules that ensures an appropriate response to restore protein folding homeostasis to the ER by modulating the sensitivity and dynamics of Ire1 activity.  相似文献   

20.
The yeast Mid1 protein with an apparent molecular mass of 100 kDa is required for Ca2+ influx stimulated by the mating pheromone and by a capacitative calcium entrylike mechanism acting in response to Ca2+ depletion from the endoplasmic reticulum (ER) and functions as a stretch-activated Ca2+ -permeable channel when expressed in mammalian cells. Our previous work with protease protection experiments has indicated that Mid1 is present in the plasma membrane. In this study, we examined a possible intracellular localization of this protein by indirect fluorescence microscopy and found that Mid1 is present in the ER membrane as well as the plasma membrane. Intracellular fluorescence images for Mid1 were the same as those for the ER marker protein Sec71 but quite different from those of the Golgi protein Ypt1. The results were confirmed by membrane fractionation using Angiografin density gradient analysis. We also investigated the oligomeric structures and protein levels of Mid1 and found that Mid1 forms a 200-kDa oligomer by disulfide bonding. The protein level and modification of Mid1 in the plasma membrane and the ER membrane were unchanged by the mating pheromone. These findings provide new insight into the function of Mid1 in relation to localization, modification, and activation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号