首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1alpha-Hydroxy-23 carboxy-24,25,26,27-tetranorvitamin D(3) (calcitroic acid) is known to be the major water-soluble metabolite produced during the deactivation of 1,25-(OH)(2)D(3). This deactivation process is carried out exclusively by the multicatalytic enzyme CYP24 and involves a series of oxidation reactions at C(24) and C(23) leading to side-chain cleavage and, ultimately, formation of the calcitroic acid. Like 1,25-(OH)(2)D(3), 1alpha,25-1,25-(OH)(2)D(2) is also known to undergo side-chain oxidation and side-chain cleavage to form calcitroic acid (Zimmerman et al. [2001]. 1,25-(OH)(2)D(2) differs from 1,25-(OH)(2)D(3) by the presence of a double bond at C(22) and a methyl group at C(24). To date, there have been no studies detailing the participation of CYP24 in the production of calcitroic acid from 1,25-(OH)(2)D(2). We, therefore, studied the metabolism of 1,25-(OH)(2)D(3) and 1,25-(OH)(2)D(2) using a purified rat CYP24 system. Lipid and aqueous-soluble metabolites were prepared for characterization. Aqueous-soluble metabolites were subjected to reverse-phase high-pressure liquid chromatography (HPLC) analysis. As expected, 1,23(OH)(2)-24,25,26,27-tetranor D and calcitroic acid were the major lipid and aqueous-soluble metabolites, respectively, when 1,25-(OH)(2)D(3) was used as substrate. However, when 1,25-(OH)(2)D(2) was used as substrate, 1,24(R),25-(OH)(3)D(2) was the major lipid-soluble metabolite with no evidence for the production of either 1,23(OH)(2)-24,25,26,27-tetranor D or calcitroic acid. Apparently, the CYP24 was able to 24-hydroxylate 1,25-(OH)(2)D(2), but was unable to effect further changes, which would result in side-chain cleavage. These data suggest that the presence of either the double bond at C(22) or the C(24) methyl group impedes the metabolism of 1,25-(OH)(2)D(2) to calcitroic acid by CYP24 and that enzymes other than CYP24 are required to effect this process.  相似文献   

2.
3.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

4.
Our previous study revealed that human CYP24A1 catalyzes a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways that used both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) as substrates, while rat CYP24A1 showed extreme predominance of the C-24 over C-23 hydroxylation pathway [Sakaki, T., Sawada, N., Komai, K., Shiozawa, S., Yamada, S., Yamamoto, K., Ohyama, Y. and Inouye, K. (2000) Eur. J. Biochem. 267, 6158-6165]. In this study, by using the Escherichia coli expression system for human CYP24A1, we identified 25,26,27-trinor-23-ene-D(3) and 25,26,27-trinor-23-ene-1alpha(OH)D(3) as novel metabolites of 25(OH)D(3) and 1alpha,25(OH)(2)D(3), respectively. These metabolites appear to be closely related to the C-23 hydroxylation pathway, because human CYP24A1 produces much more of these metabolites than does rat CYP24A1. We propose that the C(24)-C(25) bond cleavage occurs by a unique reaction mechanism including radical rearrangement. Namely, after hydrogen abstraction of the C-23 position of 1alpha,25(OH)(2)D(3), part of the substrate-radical intermediate is converted into 25,26,27-trinor-23-ene-1alpha(OH)D(3), while a major part of them is converted into 1alpha,23,25(OH)(3)D(3). Because the C(24)-C(25) bond cleavage abolishes the binding affinity of 1alpha,25(OH)D(3) for the vitamin D receptor, this reaction is quite effective for inactivation of 1alpha,25(OH)D(3).  相似文献   

5.
The metabolism of 1alpha,25(OH)(2)D(3) (1alpha,3beta) and its A-ring diastereomers, 1beta,25(OH)(2)D(3) (1beta,3beta), 1alpha,25(OH)(2)-3-epi-D(3) (1alpha,3alpha), and 1beta,25(OH)(2)-3-epi-D(3) (1beta,3alpha), was examined to compare the substrate specificity and reaction specificity of CYP24A1 between humans and rats. The ratio between C-23 and C-24 oxidation pathways in human CYP24A1-dependent metabolism of (1alpha,3alpha) and (1beta,3alpha) was 1:1, although the ratio for (1alpha,3beta) and (1beta,3beta) was 1:4. These results indicate that the orientation of the hydroxyl group at the C-3 position determines the ratio between C-23 and C-24 oxidation pathways. A remarkable increase of metabolites in the C-23 oxidation pathway was also observed in rat CYP24A1-dependent metabolism. The binding affinity of human CYP24A1 for A-ring diastereomers was (1alpha,3beta)>(1alpha,3alpha)>(1beta,3beta)>(1beta,3alpha), indicating that both hydroxyl groups at C-1 and C-3 positions significantly affect substrate-binding. The information obtained in this study is quite useful for understanding substrate recognition of CYP24A1 and designing new vitamin D analogs.  相似文献   

6.
It is now well established that 1alpha,25(OH)2D3 is metabolized in its target tissues through the modifications of both side chain and A-ring. The C-24 oxidation pathway is the side chain modification pathway through which 1alpha,25(OH)2D3 is metabolized into calcitroic acid. The C-3 epimerization pathway is the A-ring modification pathway through which 1alpha,25(OH)2D3 is metabolized into 1alpha,25(OH)2-3-epi-D3. During the past two decades, a great number of vitamin D analogs were synthesized by altering the structure of both side chain and A-ring of 1alpha,25(OH)2D3 with the aim to generate novel vitamin D compounds that inhibit proliferation and induce differentiation of various types of normal and cancer cells without causing significant hypercalcemia. Previously, we used some of these analogs as molecular probes to examine how changes in 1alpha,25(OH)2D3 structure would affect its target tissue metabolism. Recently, several nonsteroidal analogs of 1alpha,25(OH)2D3 with unique biological activity profiles were synthesized. Two of the analogs, SL 117 and WU 515 lack the C-ring of the CD-ring skeleton of 1alpha,25(OH)2D3. SL 117 contains the same side chain as that of 1alpha,25(OH)2D3, while WU 515 contains an altered side chain with a 23-yne modification combined with hexafluorination at C-26 and C-27. Presently, it is unknown how the removal of C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 would affect its target tissue metabolism. In the present study, we compared the metabolic fate of SL 117 and WU 515 with that of 1alpha,25(OH)2D3 in both the isolated perfused rat kidney, which expresses only the C-24 oxidation pathway and rat osteosarcoma cells (UMR 106), which express both the C-24 oxidation and C-3 epimerization pathways. The results of our present study indicate that SL 117 is metabolized like 1alpha,25(OH)2D3, into polar metabolites via the C-24 oxidation pathway in both rat kidney and UMR 106 cells. As expected, WU 515 with altered side chain structure is not metabolized via the C-24 oxidation pathway. Unlike in rat kidney, both SL 117 and WU 515 are also metabolized into less polar metabolites in UMR 106 cells. These metabolites displayed GC and MS characteristics consistent with A-ring epimerization and were putatively assigned as C-3 epimers of SL 117 and WU 515. In summary, we report that removal of the C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 does not alter its target tissue metabolism significantly.  相似文献   

7.
A new metabolite of vitamin D3 was produced in vitro by perfusing rat kidneys with 1,25-dihydroxyvitamin D3 (4 X 10(-6) M). It was isolated and purified from the lipid extract of the kidney perfusate by high-performance liquid chromatography. By means of ultraviolet absorption spectrophotometry, mass spectrometry, chemical derivatization, and chemical synthesis, the new metabolite was identified as 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3. Along with the new metabolite, three other previously identified metabolites, namely, 1,24,25-trihydroxyvitamin D3, 1,25-dihydroxy-24-oxovitamin D3, and 1,23,25-trihydroxy-24-oxovitamin D3, were also isolated. The new metabolite was also formed when 1,23,25-trihydroxy-24-oxovitamin D3 was used as the substrate. Thus, the new metabolite fits into the following metabolic pathway: 1,25-dihydroxyvitamin D3----1,24(R),25-trihydroxyvitamin D3----1,25-dihydroxy-24-oxovitamin D3----1,23,25-trihydroxy-24-oxovitamin D3----1,23-dihydroxy-24,25,26,27-tetranorvitamin D3. Further, we used 1 alpha,25-dihydroxy[1 beta-3H]vitamin D3 in the kidney perfusion system and demonstrated 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 as the major further metabolite of 1,25-dihydroxyvitamin D3, circulating in the final perfusate when kidneys were perfused with 1,25-dihydroxyvitamin D3 (6 X 10(-10) M) for 4 h. The biological activity of 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 (C-3 alcohol) and its metabolic relationship to 1-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D3 (calcitroic acid or C-23 acid), the other previously identified side-chain cleavage metabolite of 1,25-dihydroxyvitamin D3, are unknown and are presently undergoing investigation.  相似文献   

8.
The 20-epi form of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)-20-epi-D(3)) is expected as drugs for leukemia, other cancers or psoriasis, because it shows several-hundred fold enhanced ability to induce cell differentiation and growth inhibition than 1alpha,25-dihydroxyvitamin D(3) while its calcemic activity is only slightly elevated. In this study, we compared the human and rat CYP24-dependent metabolism of 1alpha,25(OH)(2)-20-epi-D(3) by using the Escherichia coli expression system. The HPLC and LC-MS analyses of the metabolites revealed that rat CYP24 converted 1alpha,25(OH)(2)-20-epi-D(3) to 25,26,27-trinor-1alpha(OH)-24(COOH)-20-epi-D(3) through 1alpha,24,25(OH)(3)-20-epi-D(3) and 1alpha,25(OH)(2)-24-oxo-20-epi-D(3). The binding affinity of trinor-1alpha(OH)-24(COOH)-20-epi-D(3) for vitamin D receptor (VDR) was less than 1/4000 of that of 1alpha,25(OH)(2)-20-epi-D(3). These results suggest that rat CYP24 can almost completely inactivate 1alpha,25(OH)(2)-20-epi-D(3). On the other hand, human CYP24 mainly converted 1alpha,25(OH)(2)-20-epi-D(3) to its putative demethylated compound with a hydroxyl group, via 1alpha,24,25(OH)(3)-20-epi-D(3), 1alpha,25(OH)(2)-24-oxo-20-epi-D(3), and 1alpha,23,25(OH)(3)-24-oxo-20-epi-D(3). All of these metabolites showed considerable affinity for vitamin D receptor. These results clearly demonstrate the species-based difference between human and rat on the CYP24-dependent metabolism of 1alpha,25(OH)(2)-20-epi-D(3).  相似文献   

9.
G S Reddy  K Y Tserng 《Biochemistry》1989,28(4):1763-1769
About a decade ago calcitroic acid was isolated as a major side chain cleaved water-soluble metabolite of 1,25-dihydroxyvitamin D3 [Esvelt, R. P., Schnoes, H. K., & Decula, H. F. (1979) Biochemistry 18, 3977]. Presently, calcitroic acid is being considered as the major excretory form of 1,25-dihydroxyvitamin D3. However, the exact site or sites of calcitroic acid production and the possible side chain modified intermediary metabolites that may be formed during the conversion of 1,25-dihydroxyvitamin D3 into calcitroic acid are not fully understood. In the mean time there have been many advances in our understanding of the side-chain metabolism of 1,25-dihydroxyvitamin D3. It is now well established that both the kidney and the intestine metabolize 1,25-dihydroxyvitamin D3 through the C-24 oxidation pathway according to the following steps: 1,25-dihydroxyvitamin D3----1,24,25-trihydroxyvitamin D3----1,25-dihydroxy-24-oxovitamin D3-----1,23,25-trihydroxy-24-oxovitamin D3. Recently, we identified 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 (C-23 alcohol) as a major side chain cleaved lipid-soluble metabolite of 1,25-dihydroxyvitamin D3 and further extended the aforementioned C-24 oxidation pathway in the kidney by demonstrating 1,23,25-trihydroxy-24-oxovitamin D3 as the precursor of C-23 alcohol [Reddy, G. S., Tserng, K. Y., Thomas, B. R., Dayal, R., & Norman, A. W. (1987) Biochemistry 26, 324]. In this present study, we investigated the metabolic fate of 1,25-dihydroxyvitamin D3 (3 X 10(-10) M) in the perfused rat kidney and identified calcitroic acid as the major water-soluble metabolite of 1,25-dihydroxyvitamin D3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Human 25-hydroxyvitamin D3 (25(OH)D3) 24-hydroxylase (CYP24) cDNA was expressed in Escherichia coli, and its enzymatic and spectral properties were revealed. The reconstituted system containing the membrane fraction prepared from recombinant E. coli cells, adrenodoxin and adrenodoxin reductase was examined for the metabolism of 25(OH)D3, 1alpha,25(OH)2D3 and their related compounds. Human CYP24 demonstrated a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways towards both 25(OH)D3 and 1alpha,25(OH)2D3, whereas rat CYP24 showed almost no C-23 hydroxylation pathway [Sakaki, T. Sawada, N. Nonaka, Y. Ohyama, Y. & Inouye, K. (1999) Eur. J. Biochem. 262, 43-48]. HPLC analysis and mass spectrometric analysis revealed that human CYP24 catalyzed all the steps of the C-23 hydroxylation pathway from 25(OH)D3 via 23S, 25(OH)2D3, 23S,25,26(OH)3D3 and 25(OH)D3-26,23-lactol to 25(OH)D3-26, 23-lactone in addition to the C-24 hydroxylation pathway from 25(OH)D3 via 24R,25(OH)2D3, 24-oxo-25(OH)D3, 24-oxo-23S,25(OH)2D3 to 24,25,26,27-tetranor-23(OH)D3. On 1alpha,25(OH)2D3 metabolism, similar results were observed. These results strongly suggest that the single enzyme human CYP24 is greatly responsible for the metabolism of both 25(OH)D3 and 1alpha,25(OH)2D3. We also succeeded in the coexpression of CYP24, adrenodoxin and NADPH-adrenodoxin reductase in E. coli. Addition of 25(OH)D3 to the recombinant E. coli cell culture yielded most of the metabolites in both the C-23 and C-24 hydroxylation pathways. Thus, the E. coli expression system for human CYP24 appears quite useful in predicting the metabolism of vitamin D analogs used as drugs.  相似文献   

11.
1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is mainly metabolized via the C-24 oxidation pathway and undergoes several side chain modifications which include C-24 hydroxylation, C-24 ketonization, C-23 hydroxylation and side chain cleavage between C-23 and C-24 to form the final product, calcitroic acid. In a recent study we reported that 1alpha,25-dihydroxyvitamin D(2) [1alpha,25(OH)(2)D(2)] like 1alpha,25(OH)(2)D(3), is also converted into the same final product, calcitroic acid. This finding indicated that 1alpha,25(OH)(2)D(2) also undergoes side chain cleavage between C-23 and C-24. As the side chain of 1alpha,25(OH)(2)D(2) when compared to the side chain of 1alpha,25(OH)(2)D(3), has a double bond between C-22 and C-23 and an extra methyl group at C-24 position, it opens the possibility for both (a) double bond reduction and (b) demethylation to occur during the metabolism of 1alpha,25(OH)(2)D(2). We undertook the present study to establish firmly the possibility of double bond reduction in the metabolism of vitamin D(2) related compounds. We compared the metabolism of 1alpha,25-dihydroxy-22-ene-vitamin D(3) [1alpha,25(OH)(2)-22-ene-D(3)], a synthetic vitamin D analog whose side chain differs from that of 1alpha,25(OH)(2)D(3) only through a single modification namely the presence of a double bond between C-22 and C-23. Metabolism studies were performed in the chronic myeloid leukemic cell line (RWLeu-4) and in the isolated perfused rat kidney. Our results indicate that both 1alpha,25(OH)(2)-22-ene-D(3) and 1alpha,25(OH)(2)D(3) are converted into common metabolites namely, 1alpha,24(R),25-trihydroxyvitamin D(3) [1alpha,24(R),25(OH)(3)D(3)], 1alpha,25-dihydroxy-24-oxovitamin D(3) [1alpha,25(OH)(2)-24-oxo-D(3)], 1alpha,23(S),25-trihydroxy-24-oxovitamin D(3) and 1alpha,23-dihydroxy-24,25,26,27-tetranorvitamin D(3). This finding indicates that the double bond in the side chain of 1alpha,25(OH)(2)-22-ene-D(3) is reduced during its metabolism. Along with the aforementioned metabolites, 1alpha,25(OH)(2)-22-ene-D(3) is also converted into two additional metabolites namely, 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3). Furthermore, we did not observe direct conversion of 1alpha,25(OH)(2)-22-ene-D(3) into 1alpha,25(OH)(2)D(3). These findings indicate that 1alpha,25(OH)(2)-22-ene-D(3) is first converted into 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3). Then the double bonds in the side chains of 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3) undergo reduction to form 1alpha,24(R),25(OH)(3)D(3) and 1alpha,25(OH)(2)-24-oxo-D(3), respectively. Thus, our study indicates that the double bond in 1alpha,25(OH)(2)-22-ene-D(3) is reduced during its metabolism. Furthermore, it appears that the double bond reduction occurs only during the second or the third step of 1alpha,25(OH)(2)-22-ene-D(3) metabolism indicating that prior C-24 hydroxylation of 1alpha,25(OH)(2)-22-ene-D(3) is required for the double bond reduction to occur.  相似文献   

12.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

13.
The 1alpha-hydroxylated metabolite of 25-hydroxyvitamin D(3), 1,25-dihydroxyvitamin D(3), is the biologically most active metabolite of vitamin D. The 24-hydroxylated metabolites were generally considered as degradation products of a catabolic pathway finally leading to excretion of calcitroic acid. Studies with analogues fluorinated at the C-24 position did not indicate a physiological function for 24R,25(OH)(2)D(3). Nevertheless throughout the years various studies showed biologic effects of other metabolites than 1alpha,25(OH)(2)D(3). In particular the metabolite 24R,25(OH)(2)D(3) has been functionally analyzed, e.g. with respect to a role in normal chicken egg hatchability and effects on chondrocytes in the resting zone of cartilage. Numerous studies have shown the presence of the vitamin D receptor in bone cells and effects of 1alpha,25(OH)(2)D(3) on bone and bone cells. Also for 24R,25(OH)(2)D(3) studies have been performed focusing on effects on bone and bone cells. The purpose of this review is to summarize the data regarding 24R,25(OH)(2)D(3) and bone and to evaluate its role in bone biology.  相似文献   

14.
G Jones  K Kano  S Yamada  T Furusawa  H Takayama  T Suda 《Biochemistry》1984,23(16):3749-3754
By cochromatography, mass spectrometry, and chemical derivatization, we have shown that a metabolite isolated from the perfused rat kidney incubated with 24-(R),25-dihydroxyvitamin D3 is indistinguishable from chemically synthesized 24,25,26,27-tetranor-23-hydroxyvitamin D3. The new metabolite is also produced from 24-oxo-25-hydroxyvitamin D3 but not from 23(S),25-dihydroxyvitamin D3. Enzymes required for the synthesis of the new metabolite are absent in the vitamin D deplete animal but are induced along with the 25-hydroxyvitamin-D3 24-hydroxylase by vitamin D repletion. The pathway of 24,25-dihydroxyvitamin D3 metabolism in the perfused kidney is stimulated by pre-treatment of the rat with large doses of vitamin D3, suggesting that the pathway is a degradative one.  相似文献   

15.
The vitamin D metabolite, 24R,25-dihydroxyvitamin D(3) (24R,25(OH)(2)D(3)), was tested for its ability to specifically bind to basal lateral membranes isolated from intestinal epithelium of Atlantic cod (a seawater fish), carp (a freshwater fish), and chicken. Specific saturable binding was demonstrated in membranes from all three species. Membranes from Atlantic cod, carp, and chicken revealed K(d)'s of 7.3 +/- 0.9, 12.5 +/- 0.9 and 7.8 +/- 0.1 nM, and a B(max) for each species estimated to 57.9 +/- 2.9, 195.1 +/- 8.4 and 175 +/- 0.8 fmol/mg protein, respectively. Scatchard analyses indicated a convex curvature and Hill analyses revealed apparent Hill coefficients of 1.84 +/- 0.28, 1.80 +/- 0.29, and 1.78 +/- 0.27 for Atlantic cod, carp and chicken, suggesting a positive cooperative binding in all three species. Basal lateral membranes from Atlantic cod and carp were used to further characterize the binding moiety. In competition studies, basal lateral membranes from Atlantic cod or carp did not discriminate between 24R,25(OH)(2)D(3) and the 24S,25(OH)(2)D(3) isomer, whereas, 1,25(OH)(2)D(3) and 25(OH)D(3), were less effective in competing with [(3)H]24R,25(OH)(2)D(3) for binding to basal lateral membranes in Atlantic cod and carp. In both the Atlantic cod and carp enterocyte basal lateral membranes, the binding activity could be extracted equally well with high salt as with detergent, indicating a peripheral membrane protein rather than an integral membrane binding protein. Finally, isolated Atlantic cod and carp enterocytes were chosen for analyses of signal transduction events mediated by the putative receptor. In both species, 24R,25(OH)(2)D(3) but not 24S,25(OH)(2)D(3), suppressed Ca(2+)-uptake by enterocytes in a dose-dependent manner. Enterocytes from Atlantic cod and carp, acclimated to Ca(2+)-free media, responded by an intracellular Ca(2+)-release within seconds after addition of 24R,25(OH)(2)D(3) or 24S,25(OH)(2)D(3). The effects on intracellular Ca(2+)-release were dose-dependent for both metabolites. 24S,25(OH)(2)D(3) was effective at lower concentrations and triggered a higher response compared to 24R,25(OH)(2)D(3). These results suggest that the binding molecule(s) for 24R,25(OH)(2)D(3) and 24S,25(OH)(2)D(3) is/are capable of acting as a receptor, mediating rapid, non-genomic responses in intestinal cells.  相似文献   

16.
1alpha,25-Dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) (ED-71), an analog of active vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is under phase III clinical trials in Japan for the treatment of osteoporosis and bone fracture prevention. Since ED-71 has a substituent at the 2beta-position of the A-ring, it is recognized that the metabolic pathway of ED-71 might be more complicated than 1,25(OH)(2)D(3) because of metabolism at the 2beta-position substituent in addition to the inherent metabolism of the side chain. To clarify the metabolism of hydroxypropoxy substituent of the 2beta-positon and a combination of metabolism between side chain and 2beta-positon, four putative metabolites of ED-71 have been prepared as authentic samples. The metabolites at the 2beta-positon, the methyl ester derivative considered as an ester standard of the oxidized metabolite and the tetraol derivative as the truncated metabolite were synthesized from alpha-epoxide, a key intermediate of ED-71 synthesis. The combination metabolites between side chain and 2beta-positon, the 24(S)- and 24(R)-pentaols were synthesized using Trost's convergent method.  相似文献   

17.
25-Hydroxyvitamin D(3)-24-hydroxylase (24-hydroxylase) is an important inactivating enzyme and its expression is induced by 25-hydroxyvitamin D3 (25OHD3) and 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3) through action of heterodimers of vitamin D receptor (VDR) and retinoid X receptor (RXR). RXRs also act as heterodimer partners for retinoic acid receptors (RARs), mediating the action of all-trans-retinoic acid (ATRA). Prostate stroma plays a crucial role in prostate cancer development and benign prostatic hyperplasia. We demonstrate here that ATRA markedly reduced the expression of 24-hydroxylase mRNA induced by 25OHD3 and 1alpha,25-(OH)2D3 in human prostatic stromal cells P29SN and P32S but not in epithelial cells PrEC or cancer cells LNCaP. By using transfection and RAR-selective ligands, we found that the inhibitory effect of ATRA on 24-hydroxylase expression in stromal cells was mediated by RARalpha but not by RARbeta. Moreover, the ATRA-induced expression of RARbeta was also mediated by RARalpha. The combined treatment of 1alpha,25-(OH)2D3 and RARalpha agonist Am80 at 10 nM exhibited strong growth-inhibitory effect whereas either alone had no effect. Our data suggest that ATRA suppresses 24-hydroxylase expression through RARalpha-dependent signaling pathway and can enhance vitamin D action in suppression of cell growth.  相似文献   

18.
19.
Since our original demonstration of the metabolism of 1alpha,25(OH)2D3 into 1alpha,25(OH)2-3-epi-D3 in human keratinocytes, there have been several reports indicating that epimerization of the 3 hydroxyl group of vitamin D compounds is a common metabolic process. Recent studies reported the metabolism of 25OHD3 and 24(R),25(OH)2D3 into their respective C-3 epimers, indicating that the presence of 1alpha hydroxyl group is not necessary for the 3-epimerization of vitamin D compounds. To determine whether the presence of a 25 hydroxyl group is required for 3-epimerization of vitamin D compounds, we investigated the metabolism of 1alphaOHD3, a non-25 hydroxylated vitamin D compound, in rat osteosarcoma cells (ROS 17/2.8). We noted metabolism of 1alphaOHD3 into a less polar metabolite which was unequivocally identified as 1alphaOH-3-epi-D3 using the techniques of HPLC, GC/MS, and 1H-NMR analysis. We also identified 1alphaOH-3-epi-D3 as a circulating metabolite in rats treated with pharmacological concentrations of 1alphaOHD3. Thus, these results indicated that the presence of a 25 hydroxyl group is not required for 3-epimerization of vitamin D compounds. Furthermore, the results from the same studies also provided evidence to indicate that 1alphaOH-3-epi-D3, like 1alphaOHD3, is hydroxylated at C-25. We then evaluated the biological activities of 1alphaOH-3-epi-D3. Treatment of normal rats every other day for 7 days with 2.5 nmol/kg of 1alphaOH-3-epi-D3 did not raise serum calcium, while the same dose of 1alphaOHD3 increased serum calcium by 3.39 +/- 0.52 mg/dl. Interestingly, in the same rats which received 1alphaOH-3-epi-D3 we also noted a reduction in circulating PTH levels by 65 +/- 7%. This ability of 1alphaOH-3-epi-D3 to suppress PTH levels in normal rats without altering serum calcium was further tested in rats with reduced renal function. The results indicated that the ED50 of 1alphaOH-3-epi-D3 for suppression of PTH was only slightly higher than that of 1alpha,25(OH)2D3, but that the threshold dose of the development of hypercalcemia (total serum Ca > 10.5 mg/dl) was nearly 80 times higher. These findings indicate that 1alphaOH-3-epi-D3 is a highly selective vitamin D analog with tremendous potential for treatment of secondary hyperparathyroidism in chronic renal failure patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号