首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

5.
6.
Dokladda K  Green KA  Pan DA  Hardie DG 《FEBS letters》2005,579(1):236-240
The MAP kinase pathway inhibitor U0126 caused phosphorylation and activation of AMP-activated protein kinase (AMPK) and increased phosphorylation of its downstream target acetyl-CoA carboxylase, in HEK293 cells. This effect only occurred in cells expressing the upstream kinase, LKB1. Of two other widely used MAP kinase pathway inhibitors not closely related in structure to U0126, PD98059 also activated AMPK but PD184352 did not. U0126 and PD98059, but not PD184352, also increased the cellular ADP:ATP and AMP:ATP ratios, accounting for their ability to activate AMPK. These results suggest the need for caution in interpreting experiments conducted using U0126 and PD98059.  相似文献   

7.
8.
Although there have been many reports on the relationship between activation of telomerase and carcinogenesis, the role of telomerase in normal cellular growth is still unclear. In this study, we analyzed the relationship between upregulation of telomerase activity and cell cycle progression during the liver regeneration process by using an in vivo mouse two-thirds partial hepatectomy (PH) model as well as by using in vitro hepatocyte culture systems. Furthermore, we also investigated the effects of growth factors on telomerase activity during liver regeneration and the influence of MAPK pathway inhibitors (MEK inhibitors PD98059 and U0126; p38 MAPK inhibitor SB203580) on the telomerase activity of regenerating hepatocytes in vitro. An upregulation of the telomerase activity was found at 24 h after PH, and thereafter an increase in the S-phase fraction was observed at 36-48 h. There was no remarkable change in the telomere length after PH. Preoperative treatment with EGF and HGF increased the in vivo telomerase activity. In a hepatocyte primary culture, the upregulation of the telomerase activity required the presence of EGF, and this upregulation was accelerated by the addition of HGF. A remarkable activation of p44/42 MAPK was seen but no such activation of p38 MAPK was observed at 48 h after PH. Although SB203580 had no effect on the telomerase activity of regenerating hepatocytes, treatment with MEK inhibitors (PD 98059, U0126) significantly repressed the telomerase activity. In conclusion, the telomerase activity is upregulated before hepatocytes enter the S phase, and both EGF and HGF play important roles in this step. In addition, the activation of the p44/42 MAPK pathway seems to play an essential role in telomerase upregulation during the liver regeneration process.  相似文献   

9.
Although it is known that transforming growth factor (TGF)-beta induces vascular endothelial growth factor (VEGF) synthesis in vascular smooth muscle cells, the underlying mechanisms are still poorly understood. In the present study, we examined whether the mitogen-activated protein (MAP) kinase superfamily is involved in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle A10 cells. TGF-beta stimulated the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase, but not that of SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The VEGF synthesis induced by TGF-beta was not affected by PD98059 or U0126, specific inhibitors of the upstream kinase that activates p42/p44 MAP kinase. We confirmed that PD98059 or U0126 did actually suppress the phosphorylation of p42/p44 MAP kinase by TGF-beta in our preparations. PD169316 and SB203580, specific inhibitors of p38 MAP kinase, significantly reduced the TGF-beta-stimulated synthesis of VEGF (each in a dose-dependent manner). PD169316 or SB203580 attenuated the TGF-beta-induced phosphorylation of p38 MAP kinase. These results strongly suggest that p38 MAP kinase plays a part in the pathway by which TGF-beta stimulates the synthesis of VEGF in aortic smooth muscle cells.  相似文献   

10.
It has been shown that thyroid hormone stimulates the activity of alkaline phosphatase, a marker of mature osteoblast phenotype, in osteoblasts. In the present study, we investigated whether p44/p42 mitogen-activated protein (MAP) kinase is involved in the thyroid hormone-stimulated alkaline phosphatase activity in osteoblast-like MC3T3-E1 cells. Triiodothyronine (T(3)) markedly induced the phosphorylation of p44/p42 MAP kinase. PD98059 and U0126, inhibitors of the upstream kinase that activates p44/p42 MAP kinase, significantly enhanced the T(3)-induced alkaline phosphatase activity in a dose-dependent manner. The phosphorylation of p44/p42 MAP kinase induced by T(3) was reduced by U0126. These results strongly suggest that p44/p42 MAP kinase takes part in the thyroid hormone-stimulated alkaline phosphatase activity in osteoblasts and that p44/p42 MAP kinase plays an inhibitory role in the thyroid hormone-effect.  相似文献   

11.
12.
Basic fibroblast growth factor (bFGF) has been reported to promote the formation of axonal branches in cultured brain neurons. In the present study, we investigated whether the mitogen-activated protein kinase (MAPK) cascade was involved in this action of bFGF in cultured rat hippocampal neurons. Recombinant human bFGF (0.1-10 ng/ml) induced phosphorylation of p44/42 MAPK in a concentration and time-dependent manner. The phosphorylation of p44/42 MAPK occurred rapidly within 5 min after addition of bFGF, and lasted for 48 h. The bFGF-induced phosphorylation of p44/42 MAPK and axonal branch formation were both blocked by simultaneous addition of U0126 and PD98059, specific inhibitors of MAPK kinases. Furthermore, when U0126 and PD98059 were added 24 h after bFGF, phosphorylation of p44/42 m MAPK was decreased, and axonal branch formation was stopped. These results suggest that sustained activation of the MAPK cascade is required for bFGF-mediated axonal branch formation.  相似文献   

13.
Interleukin-1beta (IL-1beta) has been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) on airway epithelial cells and contributes to inflammatory responses. However, the mechanisms regulating ICAM-1 expression by IL-1beta in human A549 cells was not completely understood. Here, the roles of mitogen-activated protein kinases (MAPKs) and NF-kappaB pathways for IL-1beta-induced ICAM-1 expression were investigated in A549 cells. IL-1beta induced expression of ICAM-1 protein and mRNA in a time- and concentration-dependent manner. The IL-1beta induction of ICAM-1 mRNA and protein were partially inhibited by U0126 and PD98059 (specific inhibitors of MEK1/2) and SP600125 [a specific inhibitor of c-Jun-N-terminal kinase (JNK)]. U0126 was more potent than other inhibitors to attenuate IL-1beta-induced ICAM-1 expression. Consistently, IL-1beta stimulated phosphorylation of p42/p44 MAPK and JNK which was attenuated by pretreatment with U0126 or SP600125, respectively. Moreover, transfection with dominant negative mutants of MEK1/2 (MEK K97R) or ERK2 (ERK2 K52R) also attenuated IL-1beta-induced ICAM-1 expression. The combination of PD98059 and SP600125 displayed an additive effect on IL-1beta-induced ICAM-1 gene expression. IL-1beta-induced ICAM-1 expression was almost completely blocked by a specific NF-kappaB inhibitor helenalin. Consistently, IL-1beta stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha which was blocked by helenalin, U0126, or SP600125. Taken together, these results suggest that activation of p42/p44 MAPK and JNK cascades, at least in part, mediated through NF-kappaB pathway is essential for IL-1beta-induced ICAM-1 gene expression in A549 cells. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in the airway disease.  相似文献   

14.
The proteasome is emerging as a target for cancer therapy because small molecule inhibitors of its catalytic activity induce apoptosis in both in vitro and in vivo models of human malignancies and are proving to have efficacy in early clinical trials. To further elucidate the mechanism of action of these inhibitors, their impact on signaling through the p44/42 mitogen-activated protein kinase (MAPK) pathway was studied. Proteasome inhibition with either carbobenzoxy-leucyl-leucyl-phenylalaninal or lactacystin led to a loss of dually phosphorylated, activated p44/42 MAPK in A1N4-myc human mammary and MDA-MB-231 breast carcinoma cells in a dose- and time-dependent fashion. This correlated with an induction of the dual specificity MAPK phosphatases (MKP)-1 and -2, and blockade of MKP induction using either actinomycin D or Ro-31-8220 significantly decreased loss of activated p44/42 MAPK. Inhibition of p44/42 MAPK signaling by use of the MAPK kinase inhibitors PD 98059 or U0126, or by use of a dominant negative MAPK construct, enhanced proteasome inhibitor-mediated apoptosis. Conversely, activation of MAPK by epidermal growth factor, or use of a mutant MAPK resistant to MKP-mediated dephosphorylation, inhibited apoptosis. These studies support a role for inactivation of signaling through the p44/42 MAPK pathway in proteasome inhibitor-mediated apoptosis.  相似文献   

15.
Incubation of cultured bovine adrenal medullary cells with 17beta-estradiol (E(2)) (0.3-100nM) or membrane-impermeable E(2)-bovine serum albumin (100nM) acutely increased (14)C-catecholamine synthesis from [(14)C]tyrosine. The stimulatory effect of E(2) was not inhibited by ICI182,780, a nuclear estrogen receptor inhibitor. E(2) also increased tyrosine hydroxylase activity and p44/42MAPK phosphorylation, the former of which was attenuated by U0126, an inhibitor of p44/42MAPK kinase. The plasma membrane isolated from the gland showed two classes of specific binding sites of [(3)H]E(2) with apparent K(d)s of 3.2 and 106nM, and B(max)s of 0.44 and 8.5pmol/mg protein, respectively. The high-affinity binding of [(3)H]E(2) was most strongly inhibited by E(2) and phytoestrogens, and to lesser extents by other steroid hormones, while it was enhanced by ICI182,780 and environmental estrogenic pollutants. These findings suggest that E(2) acutely stimulates catecholamine synthesis via activation of p44/42MAPK through unique estrogen receptors in the plasma membrane of bovine adrenal medulla.  相似文献   

16.
PD98059 and U0126 are organic compound inhibitors frequently used to block the activity of the MEK-1/2 protein kinase. In the present work, promoter activation analyses of xanthine oxidoreductase (XOR) in epithelial cells uncovered the unexpected opposite effect of these inhibitors on activation of XOR. Activation of an XOR-luciferase fusion gene was studied in stably transfected epithelial cells. The XOR reporter gene was activated by the epidermal growth factors (EGF), prolactin, and dexamethasone and by the acute phase cytokines (APC) IL-1, IL-6, and TNFalpha as previously reported for its native gene, and insulin further stimulated activation induced with acute phase cytokines or growth factors. Activation of the proximal promoter was blocked by inhibitors of the glucocorticoid receptor (GR), p38 MAP kinase, and U0126. Unexpectedly, PD98059 activated the promoter and significantly enhanced expression induced by insulin, APC, or growth factors. Analysis of the XOR upstream DNA and proximal promoter revealed primary roles for the GR and STAT3 in mediating the effects of PD98059 on XOR activation and protein complex formation with the promoter. STAT3 phosphotyrosine-705 was rapidly induced by PD98059, dexamethasone, and insulin. XOR activation by PD98059, dexamethasone, or insulin was superinduced by a constitutively active derivative of STAT3, while a dominant negative derivative of STAT3 blocked the enhancing effect of PD98059 on XOR activation. These data demonstrate a previously unrecognized effect of PD98059 on STAT3 and the GR that could have unanticipated consequences when used to infer the involvement of the MEK-1/2 protein kinase.  相似文献   

17.
In a previous study involving the inhibition of mitogen-activated protein kinase (MAPK) activation during fertilization of the marine worm Urechis caupo, we found that PD98059, but not U0126, caused multiple sperm penetrations in oocytes (Gould and Stephano, 1999, Dev. Biol. 216, 348-358). Since these oocytes are protected against polyspermy by a positive shift in membrane potential at fertilization (Gould-Somero et al., 1979, J. Cell Biol. 82, 426-440), we investigated the effects of PD98059 on the electrical properties of the oocyte membrane. PD98059, but not U0126, selectively blocked the voltage-dependent Ca(2+) channels that participate in the electrical polyspermy block. We also noted previously that PD98059 had more serious effects than U0126 on chromosome behavior during meiosis. This, too, could be explained by the effect on Ca(2+) channels, since when U0126-treated eggs were fertilized in low Ca(2+) seawater to reduce Ca(2+) uptake, similar effects were produced. These results show that PD98059 has side effects unrelated to the inhibition of MAPK activation and underscores the need for caution in interpreting the results of experiments with this widely used MEK inhibitor.  相似文献   

18.
19.
Thyroid hormone (T3) increases Na-K-ATPase activity in rat adult alveolar type II cells via a PI3K-dependent pathway. In these cells, dopamine and beta-adrenergic agonists can stimulate Na-K-ATPase activity through either PI3K or MAPK pathways. We assessed the role of the MAPK pathway in the stimulation of Na-K-ATPase by T3. In the adult rat alveolar type II-like cell line MP48, T3 enhanced MAPK/ERK1/2 activity in a dose-dependent manner. Increased ERK1/2 phosphorylation was observed within 5 min, peaked at 20 min, and then decreased. Two MEK1/2 inhibitors, U0126 and PD-98059, each abolished the T3-induced increase in the quantity of Na-K-ATPase alpha(1)-subunit plasma membrane protein and Na-K-ATPase activity. T3 also increased the phosphorylation of MAPK/p38; however, SB-203580, a specific inhibitor of MAPK/p38 activity, did not prevent the T3-induced Na-K-ATPase activity. SP-600125, a specific inhibitor of the MAPK/JNK pathway, also did not block the T3-induced Na-K-ATPase activity. Phorbol 12-myristate 13-acetate (PMA) significantly increased ERK1/2 phosphorylation and Na-K-ATPase activity. The PMA-induced Na-K-ATPase activity was inhibited by U0126. These data indicate that activation of MAPK-ERK1/2 was required for the T3-induced increase in Na-K-ATPase activity in addition to the requirement for the PI3K pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号