首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cuttings were produced from Solanum tuberosum L., cv. Desiree, plants and their transgenic forms harboring rolB and rolC genes from Agrobacterium rhizogenes. Plants were cultured on hormone-free Murashige and Skoog nutrient medium (MS) and on MS supplemented with IAA or kinetin. In microtubers developed on these cuttings, we estimated the content of starch and the number and size of starch granules. Expression of rol genes changed these indices: in tubers of rolC transformants, a greater number of small granules were produced, whereas in tubers of rolB transformants, a fewer number of large granules were developed as compared with wild-type plants. Expression of rol genes did not affect starch content during the first three weeks of cutting culturing but increased it by 15–30% in five-week-old tubers. IAA addition to MS medium increased starch content and the size of starch granules in control plants and rolB tubers by 10–30%, whereas kinetin did not exert any significant influence. The effects of rol transgenes on the initiation and termination of starch granule development are discussed.  相似文献   

2.
The effect of indole-3-acetic acid or kinetin on the weight and numberof microtubers formed was studied on single node cuttings of sevendifferent potato (Solanum tuberosum L.) cultivars as well astransgenic lines harbouring rolB or rolC genes undercontrol of the patatin class I (B33) promoter. Plants were cultivatedin vitro in the dark on solidified MS medium containing 1 to8% sucrose with or without phytohormones. Most of thenontransformed potato cultivars and transgenic lines responded tohormone application by an increase in tuber yield. Auxin and cytokininacted differently: IAA increased predominantly the tuber size whilekinetin increased the number of tubers. RolC transformantsdisplayed an altered response to sucrose and especially to auxin. Thedegree of phytohormone effect on tuberisation parameters depended onsucrose content of the medium and potato genotype.  相似文献   

3.
4.
Soybean (Glycine max L.) cultivar NARC-4 was transformed with constructs carrying rolA, rolB, or rolC genes, each under the control of the Cauliflower Mosaic Virus 70S promoter. Cotyledonary nodes of soybean seeds were infected with Agrobacterium tumefaciens strain LBA4404 carrying one of the three rol genes, along with nptII in the plasmid pLBR. The efficiency of the transformation varied slightly among the three constructs, with frequencies of 6, 7, and 5% for the rolA, rolB, and rolC genes, respectively, being observed. Southern blot analysis confirmed the integration of rol genes in the soybean genome with varying numbers of copies of the transgene. All transformed plants showed enhanced rooting, but the number of adventitious roots was higher for transformants carrying the rolB transgene. rolA and rolC transformants showed dwarf phenotypes, clustered branching, and variations in leaf morphology. Furthermore, these plants flowered within a short period of time and produced lower numbers of flowers. rolB transformants showed variations in phenotype, including dwarf to semi-dwarf and shrubby growth, abnormal stem growth, short internodes, variations in leaf morphology, and greenish to yellowish-green colored leaves. These plants also flowered early, but dwarf plants produced low numbers of flowers, while shrubby plants produced high numbers of flowers, but these were mostly infertile.  相似文献   

5.
6.
ADP-glucose pyrophosphorylase (AGPase) is one of the major enzymes involved in starch biosynthesis in higher plants. We report here the molecular cloning of two cDNAs encoding so far uncharacterized isoforms (AGP S2 and AGP S3) of the potato enzyme. Sequence analysis shows that the two polypeptides are more homologous to previously identified large subunit polypeptides from potato and other plant species than to small subunit isoforms. This observation suggests that AGP S2 and AGP S3 represent novel large subunit polypeptides. agpS2 is expressed in several tissues of the potato plant, including leaves and tubers. Expression was stronger in sink leaves than in source leaves, indicating developmental regulation. In leaves, agpS2 expression was induced 2- to 3-fold by exogenous sucrose; therefore, agpS2 represents a new sucrose-responsive gene of starch metabolism. Expression of agpS3 was restricted to tubers: no agpS3 expression could be seen in leaves of different developmental stages, or when leaves were incubated in sucrose. Therefore, agpS3 represents the only AGPase gene so far characterized from potato, which is not expressed in leaves. Conversely, all four AGPase isoforms known from potato are expressed in tubers.  相似文献   

7.
The sucrose proton-cotransporter gene from potato (StSUT1) is mainly expressed in the phloem of mature, exporting leaves. To study the in vivo role of the protein, potato plants were transformed with antisense constructs of the sucrose transporter cDNA under control of the CaMV35S and the rolC promoters, respectively. Both types of transgenic plant develop symptoms characteristic of an inhibition of phloem loading. To determine the level of inhibition, immunological and transport studies were performed. Purified antibodies directed against a peptide from the central loop of SUT1 recognized a transporter with an apparent molecular mass of 47 kDa in leaf plasma membrane vesicles. Antisense repression under control of the non-specific CaMV35S promoter led to a strong reduction in SUT1 protein, whereas no such reduction could be detected when the companion cell-specific rolC promoter was used. Similarily. sucrose uptake in plasma membrane vesicles was reduced by 50–75% in CaMV35S but not in rolC plants. These data suggest that, unlike the rolC promoter, the sucrose transporter is expressed not only in the companion cells but also in other leaf cells. However, inhibition of the transporter by rolC-controlled antisense repression is sufficient to impair phloem loading.  相似文献   

8.
Metabolite levels and carbohydrates were investigated in the leaves of tobacco (Nicotiana tabacum L.) and leaves and tubers of potato (Solanum tuberosum L.) plants which had been transformed with pyrophosphatase from Escherichia coli. In tobacco the leaves contained two- to threefold less pyrophosphate than controls and showed a large increase in UDP-glucose, relative to hexose phosphate. There was a large accumulation of sucrose, hexoses and starch, but the soluble sugars increased more than starch. Growth of the stem and roots was inhibited and starch, sucrose and hexoses accumulated. In potato, the leaves contained two- to threefold less pyrophosphate and an increased UDP-glucose/ hexose-phosphate ratio. Sucrose increased and starch decreased. The plants produced a larger number of smaller tubers which contained more sucrose and less starch. The tubers contained threefold higher UDP-glucose, threefold lower hexose-phosphates, glycerate-3-phosphate and phosphoenolpyruvate, and up to sixfold more fructose-2,6-bisphosphatase than the wild-type tubers. It is concluded that removal of pyrophosphate from the cytosol inhibits plant growth. It is discussed how these results provide evidence that sucrose mobilisation via sucrose synthase provides one key site at which pyrophosphate is needed for plant growth, but is certainly not the only site at which pyrophosphate plays a crucial role.Abbreviations Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose 6-phosphate - FW fresh weight - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP phosphoenolpyruvate - 3PGA glycerate-3-phosphate - PFK phosphofructokinase - PFP pyrophosphate: fructose-6-phosphate phosphotransferase - Pi inorganic phosphate - PPi inorganic pyrophosphate - UDPGlc UDP-glucose This research was supported by the Deutsche Forschungsgemein-Schaft (SFB 137) and Sandoz AG (T.J., M.H., M.S.) and by the Bundesminister für Forschung und Technologie (U.S., L.W.).  相似文献   

9.
The aim of this work was to investigate the extent to which starch synthesis in potato (Solanum tuberosum L.) tubers is controlled by the activity of ADPglucose pyrophosphorylase (EC 2.7.7.27; AGPase). In order to do this, fluxes of carbohydrate metabolism were measured in tubers that had reduced AGPase activity as a result of the expression of a cDNA encoding the B subunit in the antisense orientation. Reduction in AGPase activity led to a reduction in starch accumulation, and an increase in sucrose accumulation. The control coefficient of AGPase on starch accumulation in intact plants was estimated to be around 0.3. The fluxes of carbohydrate metabolism were measured in tuber discs from wild-type and transgenic plants by investigating the metabolism of [U-14C]glucose. In tuber discs, the control coefficient of AGPase over starch synthesis was estimated as 0.55, while the control coefficient of the enzyme over sucrose synthesis was −0.47. The values obtained suggest that AGPase activity exerts appreciable control over tuber metabolism in potato. Received: 24 February 1999 / Accepted: 8 April 1999  相似文献   

10.
It has been reported that rol plant oncogenes located in Ri-plasmids of Agrobacterium rhizogenes activated synthesis of secondary metabolites in the transformed plant cells. The activator mechanism is still unknown. In this work, we studied whether the NADPH oxidase-signaling pathway, which regulates the synthesis of defense metabolites in plants, is involved in the activator function of the rol genes. It was demonstrated that the transformation of Rubia cordifolia cells by the rolB and rolC genes caused an induction of biosynthesis of anthraquinone-type phytoalexins. Inhibition studies revealed a striking difference between the rolC and rolB transformed cultures in their sensitivity to Ca2+ channel blockers and calcium deficiency. The rolC culture displayed lowered resistance to the inhibitors compared to the non-transformed culture, while the rolB culture was more resistant to the treatment. The assumption was made that the oncogenic potential of rol genes is realized through the alteration of calcium balance in the plant cells. Anthraquinone production was not inhibited in the non-transformed and transformed cultures by Ca2+ channel blockers, as well as by diphenylene iodonium, an inhibitor of NADPH oxidase, and by the protein kinase inhibitor staurosporine. These results indicate that the induction of anthraquinone production in transgenic cultures does not involve the activation of Ca2+-dependent NADPH oxidase pathway.  相似文献   

11.
Nucleotide and amino acid variability of fragments of the Sus4 gene encoding the sucrose synthase enzyme was studied in 24 potato cultivars bred in Russia and other countries and differing in starch content in tubers. Both SNPs and indels were detected in a chosen Sus4 gene fragment including the sequence from exon 3 to exon 6 and corresponding to the main part of the sucrose synthase domain. Four types of Sus4 sequences were revealed depending on the presence of an insertion in introns 4 and 5 and of the mononucleotide octamer (T)8 in intron 5. Differentiation of these sequences was confirmed by statistical methods. Sixteen amino acid substitutions were identified in the translated sequence, of which eleven were nonsynonymous. Specific cultivar-specific nucleotide and amino acid substitutions were also revealed, which can be used in future for identifying potato cultivars/genotypes. No direct associations between the mutational changes and the starch content were found in the potato cultivars studied.  相似文献   

12.
13.
14.
Overexpression of inorganic pyrophosphatase (PPase) from Escherichia coli in the cytosol of plants (ppa1 plants) leads to a decrease of inorganic pyrophosphate (PPi; U. Sonnewald, 1992, Plant J 2: 571–581). The consequences for sucrose-starch interconversions have now been studied in growing potato (Solanum tuberosum L. cv. Desirée) tubers. Sucrose is degraded via sucrose synthase and UDP-glucose pyrophosphorylase in growing tubers, and it was expected that the low PPi in the ppa1 transformants would restrict the mobilisation of sucrose and conversion to starch. Over-expression of PPase resulted in an accumulation of sucrose and UDP-glucose, and decreased concentrations of hexose phosphates and glycerate-3-phosphate in growing ppa1 tubers. Unexpectedly, the rate of degradation of [14C] sucrose was increased by up to 30%, the rate of starch synthesis was increased, and the starch content was increased by 20–30% in ppa1 tubers compared to wild-type tubers. Reasons for this unexpectedly efficient conversion of sucrose to starch in the ppa1 tubers were investigated. (i) The transformed tubers contained increased activities of several enzymes required for sucrose-starch interconversions including two- to threefold more sucrose synthase and 60% more ADP-glucose pyrophosphorylase. They also contained 30–100% increased activities of several glycolytic enzymes and amylase, increased protein, and unaltered or slightly decreased starch phosphorylase, acid invertase and mannosidase. (ii) The transformants contained higher pools of uridine nucleotides. As a result, although the UDP-glucose pool is increased two- to threefold, this does not lead to a decrease of UTP or UDP. (iii) The transformants contained twofold larger pools of ATP and ADP, and ADP-glucose was increased by up to threefold. In stored ppa1 tubers, there were no changes in the activities of glycolytic enzymes, and nucleotides did not increase. It is concluded that in growing tubers PPi has a wider significance than just being an energy donor for specific reactions in the cytosol. Increased rates of PPi hydrolysis also affect general aspects of cell activity including the levels of nucleotides and protein. Possible ways in which PPi hydrolysis could affect these processes are discussed. Received: 9 July 1997 / Accepted: 3 November 1997  相似文献   

15.
16.
Summary Growth characteristics of tobacco protoplasts containing rolA linked to its own promoter, or the rolB, or rolC genes of Agrobacterium rhizogenes linked to the Cauliflower Mosaic Virus 35S RNA promoter were compared with those from untransformed plants. RolA protoplasts require auxin and cytokinin for callus formation. Protoplasts overexpressing rolB and C form callus in the absence of exogenously applied auxin and cytokinin, respectively. Long term callus growth requires auxin, but the requirement for cytokinin is not critical. Optimal transient expression of an auxin responsive promoter element occurred at lower external levels of auxin in rolB and rolC protoplasts compared with untransformed protoplasts. Addition of putrescine was required for auxin responsive transient gene expression in rolA protoplasts suggesting that polyamines, or their products affect gene expression in rolA plants.Abbreviations T-DNA transferred DNA - TL-DNA left transferred DNA - NAA naphthalene acetic acid - PEG polyethylene glycol - GUS glucuronidase - CaMV cauliflower mosaic virus  相似文献   

17.
Summary The regulation in tobacco of the rolB and rolC promoters of Agrobacterium rhizogenes pRi 1855 TL-DNA was studied by using the -glucuronidase (GUS) reporter system in transgenic plants. A 20- to 100-fold increase of GUS activity was selectively induced by auxin in rolB-GUS transformed mesophyll protoplasts, whereas this auxin-dependent increase was only 5-fold in rolC-GUS protoplasts. Moreover, both gene fusions exhibited similar tissue-specific expression in aerial parts but different patterns in roots. The spatial pattern of rolBGUS expression could be strongly modified by the addition of exogenous auxin, further suggesting that auxin plays a central role in the regulation of the rolB promoter in tobacco. The tissue-specific and auxin-dependent regulation of the rolB promoter is discussed in relation to the effects of the rolB gene on rhizogenesis and on cellular responses to auxin.Abbreviations BA benzoic acid - 6-BAP benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - 2,4,5-T 2,4,5,-trichlorophenoxyacetic acid - 2,4,6-T 2,4,6-trichlorophenoxyacetic acid - IAA indoleacetic acid - NAA naphthaleneacetic acid - MU 4-methyl umbelliferone - 35S CaMV cauliflower mosaic virus 35S (promoter) - TCA trichloroacetic acid - X-Glu 5-bromo-4chloro-3-indolyl -d-glucuronic acid  相似文献   

18.
The expression of the rolB gene was found to increase the pectic yield in Rubia cordifolia cells, while the rolC gene inhibited the pectin production, which correlated with its expression level. The expression of the rolA, rolB, and rolC genes led to an increase in the content of arabinogalactan (AG) in cells. The increase in the expression of the rolB and rolC genes resulted in a more significant reduction in the content of arabinose residues in pectin, which was accompanied by an increased activity of α-L-arabinofuranosidase in cells. Moreover, the amount of galactose residues in pectin increased with the enhancement of the rolB expression due to a decrease in the activity of β-galactosidase in cells. The content of galacturonic acid residues in pectin from transgenic cultures decreased in the following order: rolC > rolB > rolA. The amount of arabinose residues in AG decreased independently of the gene type. The amount of arabinose residues in AG was found to be considerably reduced when the rolB expression level was increased.  相似文献   

19.
Klaus D  Ohlrogge JB  Neuhaus HE  Dörmann P 《Planta》2004,219(3):389-396
In contrast to oil seeds, potato (Solanum tuberosum L.) is characterized by a high amount of starch stored in the tubers. To assess the capacity for oil synthesis in potato tubers, the changes in lipid content and flux into lipid synthesis were explored in transgenic potatoes altered in carbohydrate or lipid metabolism. A strong decrease in the amount of starch observed in antisense lines for ADP-glucose pyrophosphorylase or plastidic phosphoglucomutase had no effect on storage-lipid content. Similarly, potato lines over-expressing the Arabidopsis thaliana (L.) Heynh. plastidic ATP/ADP transporter that contained an increased amount of starch were not altered in oil content, indicating that the plastidic ATP level is not limiting fatty acid synthesis in potato tubers. However, over-expression of the acetyl-CoA carboxylase from Arabidopsis in the amyloplasts of potato tubers led to an increase in fatty acid synthesis and a more than 5-fold increase in the amount of triacylglycerol. Taken together, these data demonstrate that potato tubers have the capacity for storage-lipid synthesis and that malonyl-CoA, the substrate for elongation during fatty acid synthesis, represents one of the limiting factors for oil accumulation.Abbreviations AATP Plastidic ADP/ATP transporter - ACCase Acetyl-CoA:carboxylase - DGAT Acyl-CoA:diacylglycerol acyltransferase - FW Fresh weight - TLC Thin-layer chromatography - WT Wild typeSource for transgenic plant material. Upon request, transgenic potato lines altered in ACCase activity can be obtained from Peter Dörmann. For potato lines with alterations in AATP transporter activity, please refer to H. Ekkehard Neuhaus. Transgenic AGP and PGM lines are available from A. Fernie (Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany).  相似文献   

20.
A region homologous to the TL-DNA of Agrobacterium rhizogenes was previously detected in the genome of untransformed Nicotiana glauca and designated cellular T-DNA (cT-DNA). Subsequently, part of this region was sequenced and two genes, which corresponded to rolB and rolC and were named NgrolB and NgrolC, were found. We have now sequenced a region of the cT-DNA other than the region that includes NgrolB and C and we have found two other open reading frames (ORFs), NgORF13 and NgORF14. These ORFs correspond to ORFs 13 and 14 of the TL-DNA of A. rhizogenes and exhibit a high degree of homology to these ORFs, without having a nonsense codon. We have not found any sequence homologous to rolD (ORF15). The two genes, NgORF13 and 14, as well as the NgrolB and C genes, are expressed in genetic tumors of hybrids between N. glauca and N. langsdorffii but not in leaf tissues of the hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号