首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phlylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences have been submitted to the GenBank nucleotide sequence database under the accession number chicken CD69 (DQ156495), CD94/NKG2 (DQ156496), and CD94/NKG2 variant (DQ241793).  相似文献   

2.
3.
4.
Conservation and variation in human and common chimpanzee CD94 and NKG2 genes.   总被引:11,自引:0,他引:11  
To assess polymorphism and variation in human and chimpanzee NK complex genes, we determined the coding-region sequences for CD94 and NKG2A, C, D, E, and F from several human (Homo sapiens) donors and common chimpanzees (Pan troglodytes). CD94 is highly conserved, while the NKG2 genes exhibit some polymorphism. For all the genes, alternative mRNA splicing variants were frequent among the clones obtained by RT-PCR. Alternative splicing acts similarly in human and chimpanzee to produce the CD94B variant from the CD94 gene and the NKG2B variant from the NKG2A gene. Whereas single chimpanzee orthologs for CD94, NKG2A, NKG2E, and NKG2F were identified, two chimpanzee paralogs of the human NKG2C gene were defined. The chimpanzee Pt-NKG2CI gene encodes a protein similar to human NKG2C, whereas in the chimpanzee Pt-NKG2CII gene the translation frame changes near the beginning of the carbohydrate recognition domain, causing premature termination. Analysis of a panel of chimpanzee NK cell clones showed that Pt-NKG2CI and Pt-NKG2CII are independently and clonally expressed. Pt-NKG2CI and Pt-NKG2CII are equally diverged from human NKG2C, indicating that they arose by gene duplication subsequent to the divergence of chimpanzee and human ancestors. Genomic DNA from 80 individuals representing six primate species were typed for the presence of CD94 and NKG2. Each species gave distinctive typing patterns, with NKG2A and CD94 being most conserved. Seven different NK complex genotypes within the panel of 48 common chimpanzees were due to differences in Pt-NKG2C and Pt-NKG2D genes.  相似文献   

5.
Receptors on natural killer (NK) cells are classified as C-type lectins or as Ig-like molecules, and many of them are encoded by two genomic clusters designated natural killer gene complex (NKC) and leukocyte receptor complex, respectively. Here, we describe the analysis of an NKC-encoded chicken C-type lectin, previously annotated as homologue to CD94 and NKG2 and thus designated chicken CD94/NKG2. To further elucidate its potential function on NK cells, we produced a specific mab by immunizing with stably transfected HEK293 cells expressing this lectin. Staining of various chicken tissues revealed minimal reactivity with bursal, or thymus cells. In peripheral blood mononuclear cell and spleen, however, the mab reacted with virtually all thrombocytes, whereas most NK cells in organs such as embryonic spleen, lung and intestine were found to be negative. These findings indicate that the gene may not resemble CD94/NKG2, but rather a CLEC-2 homologue, a claim further supported by sequence features such as an additional extracellular cysteine residue and the presence of a cytoplasmic motif known as a hem immunoreceptor tyrosine-based activation motif, found in C-type lectins such as Dectin-1, CLEC-2, but not CD94/NKG2. The biochemical analyses demonstrated that CLEC-2 is present on the cell surface as heavily glycosylated homodimer, which upon mab crosslinking induced thrombocyte activation, as measured by CD107 expression. These analyses reveal that the chicken NKC may not encode NK cell receptor genes, in particular not CD94 or NKG2 genes, and identifies a chicken CLEC-2 homologue.  相似文献   

6.
The human natural killer gene complex is located on chromosome 12p12-p13   总被引:3,自引:3,他引:0  
 Natural killer (NK) cells preferentially express several type II glycoproteins of the calcium-dependent lectin superfamily. The genes coding for these molecules are clustered on the distal mouse chromosome 6 and on the rat chromosome 4 in a region designated the NK gene complex. To date, no definite evidence of the presence of a NK gene complex has been found in humans. Here we report the assignment by fluorescence in situ hybridization of the CD94 gene to human chromosome 12p12-p13, in the same region where the CD69 and NKG2A genes had been previously mapped. In addition, using a yeast artificial chromosome contig spanning this region we determined that the human CD94, NKG2A, NKG2C, NKG2E, and NKR-P1A (NKR) genes map to the short arm of chromosome 12. The distal to proximal position of these loci are: NKR- CD69 - CD94/NKG2A/NKG2C/NKG2E. These data demonstrate the existence of a human NK gene complex located within a 5.6 cM interval flanked by the genetic markers D12S397 and D12S89. The physical distance spanned by the NK gene complex in humans ranges between 0.7 and 2.4 megabases. Received: 17 January 1997 / Revised: 10 March 1997  相似文献   

7.
8.
The participation of CD94 and NKG2 gene family members in the function of NK cells and CD8+ cytolytic cells has recently been addressed in detail. However, the role that these molecules play in the key CD4+ regulatory cells remains largely unexplored. This study has examined the expression and regulation of CD94 and NKG2 genes in purified human peripheral CD4+ cells stimulated with several agents. We found a constitutive expression of NKG2-E in CD94-depleted resting peripheral CD4+ cells, whereas inductions of NKG2-A and NKG2-C required chronic cell activation and occurred after expression of CD94. We found that CD3-mediated stimulation induces the expression of CD94 first by day 5 of culture, followed by NKG2-A by day 15 and finally NKG2-C, which is not detected until 20 days after repeated stimulation. This pattern of gene expression differs sharply from that observed in purified CD8+ T cells, where mRNA from all NKG2 gene family members are detected after 5 days of stimulation. Selective activation of TCR V beta 2-bearing cells with toxic shock syndrome toxin-1 superantigen reveals that mRNA induction of NKG2-A and NKG2-C genes is significantly influenced by the presence of cytokines (IL-10 and TGF-beta) and by the restimulation of the cells. In addition, the occupancy of the CD94/NKG2-A receptor expressed on these superantigen-stimulated CD4+ T lymphocytes abrogates TNF-alpha and IFN-gamma production, whereas NKG2-C enhances production of these cytokines. Taken together our results reveal strict gene regulatory mechanisms for CD94 and NKG2 gene expression on CD4+ cells that are different from those governing the expression of these same genes in CD8+ cells. The results suggest that these genes also participate in chronic CD4+ T-cell responses.  相似文献   

9.
Birch J  Ellis SA 《Immunogenetics》2007,59(4):273-280
Natural killer cell responses are controlled to a large extent by the interaction of an array of inhibitory and activating receptors with their ligands. The mostly nonpolymorphic CD94/NKG2 receptors in both humans and mice were shown to recognize a single nonclassical MHC class I molecule in each case. In this paper, we describe the CD94/NKG2 gene family in cattle. NKG2 and CD94 sequences were amplified from cDNA derived from four animals. Four CD94 sequences, ten NKG2A, and three NKG2C sequences were identified in total. In contrast to human, we show that cattle have multiple distinct NKG2A genes, some of which show minor allelic variation. All of the sequences designated NKG2A have two tyrosine-based inhibitory motifs in the cytoplasmic domain and one putative gene has, in addition, a charged residue in the transmembrane domain. NKG2C appears to be essentially monomorphic in cattle. All of the NKG2A sequences are similar apart from NKG2A-01, which, in contrast, shares the majority of its carbohydrate recognition domain with NKG2-C. Most of the genes appear to generate multiple alternatively spliced forms. These findings suggest that the CD94/NKG2A heterodimers in cattle, in contrast to other species, are binding several different ligands. Because NKG2C is not polymorphic, this raises questions as to the combined functional capacity of the CD94/NKG2 gene families in cattle.  相似文献   

10.
11.
In mice there are two families of MHC class I-specific receptors, namely the Ly49 and CD94/NKG2 receptors. The latter receptors recognize the nonclassical MHC class I Qa-1(b) and are thought to be responsible for the recognition of missing-self and the maintenance of self-tolerance of fetal and neonatal NK cells that do not express Ly49. Currently, how NK cells acquire individual CD94/NKG2 receptors during their development is not known. In this study, we have established a multistep culture method to induce differentiation of embryonic stem (ES) cells into the NK cell lineage and examined the acquisition of CD94/NKG2 by NK cells as they differentiate from ES cells in vitro. ES-derived NK (ES-NK) cells express NK cell-associated proteins and they kill certain tumor cell lines as well as MHC class I-deficient lymphoblasts. They express CD94/NKG2 heterodimers, but not Ly49 molecules, and their cytotoxicity is inhibited by Qa-1(b) on target cells. Using RT-PCR analysis, we also report that the acquisition of these individual receptor gene expressions during different stages of differentiation from ES cells to NK cells follows a predetermined order, with their order of acquisition being first CD94; subsequently NKG2D, NKG2A, and NKG2E; and finally, NKG2C. Single-cell RT-PCR showed coexpression of CD94 and NKG2 genes in most ES-NK cells, and flow cytometric analysis also detected CD94/NKG2 on most ES-NK cells, suggesting that the acquisition of these receptors by ES-NK cells in vitro is nonstochastic, orderly, and cumulative.  相似文献   

12.
H Jensen  L Folkersen  S Skov 《PloS one》2012,7(8):e41577
NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+) T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+) T-cells, whereas it is produced de novo in resting CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.  相似文献   

13.
We developed a sequence-ready physical map of a part of human chromosome 12p12.3-p13.2 where the natural killer gene complex (NKC) is located. The NKC includes a cluster of genes with structure similar to that of the Ca(2+)-dependent lectin superfamily of glycoproteins that are expressed on the surface of most natural killer (NK) cells and a subset of T cells. These killer cell lectin-like receptors (KLR) are involved in NK target cell recognition, leading to activation or inhibition of NK cell function. We used a number of sequence-tagged site (STS) markers from this region to screen two large insert bacterial artificial chromosome (BAC) libraries and a bacteriophage P1-derived (PAC) chromosome library. The clones were assembled into contiguous sets by STS content analysis. The 72-BAC and 11-PAC contig covers nearly 2 Mb of DNA and provides an average marker resolution of 26 kb. We have precisely localized 17 genes, 5 expressed sequence tags, and 49 STSs within this contig. Of this total number of STS, 30 are newly developed by clone-end sequencing. We established the order of the genes as tel-M6PR-MAFAL (HGMW-approved symbol KLRG1)-A2M-PZP-A2MP-NKRP1A (HGMW-approved symbol KLRB1)-CD69-AICL (HGMW-approved symbol CLECSF2)-KLRF1-OLR1-CD94 (HGMW-approved symbol KLRD1)-NKG2D (HGMW-approved symbol D12S2489E)-PGFL-NKG2F (HGMW-approved symbol KLRC4)-NKG2E (HGMW-approved symbol KLRC3)-NKG2A (HGMW-approved symbol KLRC1)-LY49L (HGMW-approved symbol KLRA1)-cen. This map would facilitate the cloning of new KLR genes and the complete sequencing of this region.  相似文献   

14.
15.
CD94/NKG2A is an inhibitory receptor expressed by most human natural killer (NK) cells and a subset of T cells that recognizes human leukocyte antigen E (HLA-E) on potential target cells. To elucidate the cell surface dynamics of CD94/NKG2A receptors, we have expressed CD94/NKG2A-EGFP receptors in the rat basophilic leukemia (RBL) cell line. Photobleaching experiments revealed that CD94/NKG2A-EGFP receptors move freely within the plasma membrane and accumulate at the site of contact with ligand. The enriched CD94/NKG2A-EGFP is markedly less mobile than the nonligated receptor. We observed that not only are lipid rafts not required for receptor polarization, they are excluded from the site of receptor contact with the ligand. Furthermore, the lipid raft patches normally observed at the sites where FcepsilonR1 activation receptors are cross-linked were not observed when CD94/NKG2A was coengaged along with the activation receptor. These results suggest that immobilization of the CD94/NKG2A receptors at ligation sites not only promote sustenance of the inhibitory signal, but by lipid rafts exclusion prevent formation of activation signaling complexes.  相似文献   

16.
The murine Nkrp1 gene family encodes three previously identified activation and inhibitory receptors expressed on natural killer (NK) cells. This family includes the gene for NKR-P1C (NK1.1), the most specific serologic marker on C57BL/6-derived NK cells and is localized in a gene cluster in the NK gene complex (NKC). To further analyze the Nkrp1 family, we constructed and analyzed a bacterial artificial chromosome contig. A genomic organization of the Nkrp1 family was obtained and three new Nkrp1 genes were isolated from interleukin-2-activated NK cells. Thus, the Nkrp1 family adds to the repertoire of receptors expressed by NK cells.  相似文献   

17.
Genetic control of human NK cell repertoire   总被引:28,自引:0,他引:28  
Through differential killer cell Ig-like receptor (KIR) and CD94:NKG2 gene expression, human NK cells generate diverse repertoires, each cell having an inhibitory receptor for autologous HLA class I. Using a new method for measuring repertoire difference that integrates multiple flow cytometry parameters, we found individual repertoire stability, but population variability. Correlating repertoire differences with KIR and HLA genotype for 85 sibling pairs reveals the dominant influence of KIR genotype; HLA genotype having a subtle, modulating effect on relative KIR expression frequencies. HLA and/or KIR genotype also influences CD94:NKG2A expression. After HLA-matched stem cell transplantation, KIR repertoires either recapitulated that of the donor or were generally depressed for KIR expression. Human NK cell repertoires are defined by combinations of variable KIR and HLA class I genes and conserved CD94:NKG2 genes.  相似文献   

18.
19.
Some T lymphocytes express the CD94 Ag, which is known to form heterodimers with members of the NKG2 family. We have studied the expression pattern and function of CD94 heterodimers in different alphabeta or gammadelta T cell clones. Most of the CD94+NKG2A- T cells have a low to intermediate expression of CD94 Ag. The cross-linking of the CD94/NKG2 heterodimer in one of these CD8 alphabeta CD94+NKG2A- T cell clones (K14B06) was able to: 1) increase the intracellular concentration of Ca2+, 2) induce the up-regulation of CD25 Ag expression and the secretion of IFN-gamma, and 3) trigger redirected cytotoxicity in a TCR-independent manner. This activatory property was not shared by any other costimulatory molecule expressed by the K14B06 T cell clone, including CD8, CD28, CD45, CD69, or CD2 Ags. The immunoprecipitation of CD94 heterodimer showed a 39-kDa band with a similar m.w. to the activatory heterodimer found on some NK clones. A novel form of the NKG2 family (NKG2H) was identified in K14B06. NKG2H protein represents an alternative spliced form of the NKG2E gene, displaying a charged residue in the transmembrane portion and a cytoplasmic tail that lacks immunoreceptor tyrosine-based inhibitory motifs. The expression of NKG2H in the cell membrane through its association to CD94 and DAP-12 molecules supports that it could form part of the activatory CD94/Kp39 heterodimer present on K14B06 cells.  相似文献   

20.
CD94 forms heterodimers with NKG2A, -C, or –E to constitute lectin-like natural killer cell receptors for MHC-E. Its structure differs from other C-type lectins in that the second α-helix is replaced by a loop that forms the interacting interface with the NKG2 molecules. Although CD94 has remained highly conserved mammals, several alternative splicing variants have been detected in some species. To evaluate the prevalence and significance of this phenomenon, we have cloned and sequenced CD94 cDNAs in six species of New World primates from the Cebidae and Atelidae families. Full-length sequences had a mean similarity of 96 % amongst New World primates and of 90 % to the human orthologue, with little variation in the residues interacting with NKG2 or MHC-E molecules. Despite this high conservation, a total of 14 different splice variants were identified, half of which were shared by two or more primate species. Homology-based modeling of the C-type lectin domain showed that most isoforms folded stably, although they had modifications that prevented its interaction with NKG2 and MHC-E. Two isoforms were predicted to replace the typical CD94 loop by a second α-helix, evidencing a domain fold transition from a CD94 structure to a canonical C-type lectin. These two structures were more similar to members of the CLEC lectin family than to the native CD94. Thus, CD94 has remained conserved in primates to maintain functional interactions with NKG2 and MHC-E, while at the same time has diversified by alternative splicing potentially providing additional functional scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号