首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNAPyl and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNASec and Pyl-tRNAPyl formation as well as the distribution of the Pyl-decoding trait.  相似文献   

2.
Selenocysteine is the 21th amino acid, which occurs in all kingdoms of life. Selenocysteine is encoded by the STOP-codon UGA. For its insertion, it requires a specific mRNA sequence downstream the UGA-codon that forms a hairpin like structure (called Sec insertion sequence (SECIS)). We consider the computational problem of generating new amino acid sequences containing selenocysteine. This requires to find an mRNA sequence that is similar to the SECIS-consensus, is able to form the secondary structure required for selenocysteine insertion, and whose translation is maximally similar to the original amino acid sequence. We show that the problem can be solved in linear time when considering the hairpin-like SECIS-structure (and, more generally, when considering a structure that does not contain pseudoknots).  相似文献   

3.
Selenocysteine lyase activity was detected in crude extracts from a cysteine-requiring mutant ofEscherichia coli K-12. The level of activity was the same whether cells had been grown aerobically or anaerobically, with or without selenocysteine. Selenocysteine lyase catalyzes the conversion of selenocysteine to alanine and elemental Se, a reaction that is followed by a nonenzymatic reduction of the Se to hydrogen selenide. Both of these end products were identified in this study. With cysteine as the substrate, alanine and H2S were formed, but only at levels 50% less than the products formed from selenocysteine. Selenocysteine lyase has been identified in a number of mammals and bacteria; its presence in a cysK mutant ofE. coli K-12 suggests a common route whereby hydrogen selenide, derived from selenocysteine, can then be assimilated into selenoproteins.  相似文献   

4.
Selenocysteine synthase of Escherichia coli catalyses the biosynthesis of selenocysteine in the form of the aminoacyl-tRNA complex, the reaction intermediate being aminoacrylyl-tRNA(sec) covalently bound to the prosthetic group of the enzyme. Selenocysteine synthase and the specific aminoacrylyl-tRNA(sec)-enzyme complex as well as the isolated seryl-tRNA(sec) were investigated in the electron microscope and analysed by means of image processing to a resolution of 2 nm in projection. The stoichiometric composition of the selenocysteine synthase molecule was elucidated by scanning transmission electron microscopic mass determination. The enzyme has a fivefold symmetric structure and consists of 10 monomers arranged in two rings. The tRNA is bound near the margin of the dimeric subunits. Principal component analysis of the tRNA-enzyme complexes revealed that the selenocysteine synthase appears to bind only one seryl-tRNA(sec) per dimer, which is consistent with the result of biochemical binding studies.  相似文献   

5.
Selenocysteine (Sec) is co-translationally incorporated into selenoproteins at a reprogrammed UGA codon. In mammals, this requires a dedicated machinery comprising a stem-loop structure in the 3′ UTR RNA (the SECIS element) and the specific SECIS Binding Protein 2. In this report, disorder-prediction methods and several biophysical techniques showed that ca. 70% of the SBP2 sequence is disordered, whereas the RNA binding domain appears to be folded and functional. These results are consistent with a recent report on the role of the Hsp90 chaperone for the folding of SBP2 and other functionally unrelated proteins bearing an RNA binding domain homologous to SBP2.  相似文献   

6.

Background  

Selenocysteine (Sec) is a selenium-containing amino acid that is co-translationally inserted into nascent polypeptides by recoding UGA codons. Selenoproteins occur in both eukaryotes and prokaryotes, but the selenoprotein content of organisms (selenoproteome) is highly variable and some organisms do not utilize Sec at all.  相似文献   

7.
K Forchhammer  K Boesmiller  A B?ck 《Biochimie》1991,73(12):1481-1486
The selAB operon codes for the proteins selenocysteine synthase and SELB which catalyse the synthesis and cotranslational insertion of selenocysteine into protein. This communication deals with the biochemical characterisation of these proteins and in particular with their specific interaction with the selenocysteine-incorporating tRNA(Sec). Selenocysteine synthase catalyses the synthesis of selenocysteyl-tRNA(Sec) from seryl-tRNA(Sec) in a pyridoxal phosphate-dependent reaction mechanism. The enzyme specifically recognizes the tRNA(Sec) molecule; a cooperative interaction between the tRNA binding site and the catalytically active pyridoxal phosphate site is suggested. SELB is an EF-Tu-like protein which specifically complexes selenocysteyl-tRNA(Sec). Interaction with the selenol group of the side chain of the aminoacylated residue is a prerequisite for the formation of a stable SELB.tRNA complex. Mechanistically, this provides the biochemical basis for the exclusive selection of selenocysteyl-tRNA(Sec) in the decoding step of a selenocysteine-specific UGA triplet.  相似文献   

8.
Selenium is present in plasma and tissues in specific and non-specific forms. The experiments reported here were carried out to clarify some factors that affect these forms of the element in plasma. A selenium-replete human subject was given 400 microg of selenium daily for 28 days as selenomethionine and, in a separate experiment, as selenate. The selenomethionine raised plasma and albumin selenium concentrations. Selenate did neither. The molar ratio of methionine to selenium in albumin was approximately 8000 under basal and selenate-supplemented conditions but 2800 after selenomethionine supplementation. This demonstrates that selenium from selenomethionine, but not selenium from selenate, can be incorporated into albumin, presumably as selenomethionine in the methionine pool. Selenocysteine incorporation into albumin was studied in rats using (75)Se-selenocysteine. No evidence was obtained for incorporation of (75)Se into albumin after exogenous administration or endogenous synthesis of (75)Se-selenocysteine. Thus, selenocysteine does not appear to be incorporated non-specifically into proteins as is selenomethionine. These findings are in support of selenomethionine being a non-specific form of selenium that is metabolized as a constituent of the methionine pool and is unaffected by specific selenium metabolic processes. No evidence was found for non-specific incorporation of selenium into plasma proteins when it was administered as selenate or as selenocysteine. These forms of the element appear to be metabolized by specific selenium metabolic processes.  相似文献   

9.
Selenocysteine is incorporated into at least 25 human proteins by a complex mechanism that is a unique modification of canonical translation elongation. Selenocysteine incorporation requires the concerted action of a kink-turn structural RNA (SECIS) element in the 3′ untranslated region of each selenoprotein mRNA, a selenocysteine-specific translation elongation factor (eEFSec) and a SECIS binding protein (SBP2). Here, we analyze the molecular context in which SBP2 functions. Contrary to previous findings, a combination of gel filtration chromatography and co-purification studies demonstrates that SBP2 does not self-associate. However, SBP2 is found to be quantitatively associated with ribosomes. Interestingly, a wild-type but not mutant SECIS element is able to effectively compete with the SBP2 ribosome interaction, indicating that SBP2 cannot simultaneously interact with the ribosome and the SECIS element. This data also supports the hypothesis that SBP2 interacts with one or more kink turns on 28S rRNA. Based on these results, we propose a revised model for selenocysteine incorporation where SBP2 remains ribosome bound except during selenocysteine delivery to the ribosomal A-site.  相似文献   

10.
Vitamin B6 enzymes participating in selenium amino acid metabolism   总被引:1,自引:0,他引:1  
Various vitamin B6 enzymes play important roles in mammalian and microbial metabolism of selenium amino acids. Selenocysteine is synthesized from selenohomocysteine by catalysis of cystathionine beta-synthase and cystathionine gamma-lyase, which both require pyridoxal phosphate. Selenocysteine beta-lyase, a new B6-enzyme, exclusively catalyzes beta-elimination of selenocysteine, and occurs in mammalian systems and bacteria. Methionine gamma-lyase, cysteine desulfurase, cysteine sulfinate desulfinase, and D-selenocystine alpha,beta-lyase, which are B6-enzymes, act on cysteine, cysteine sulfinate, D-cystine, and their derivatives, and their selenium counterparts indiscriminately. Their reaction mechanisms are comparatively described.  相似文献   

11.

Background  

Selenocysteine (Sec) is co-translationally inserted into protein in response to UGA codons. It occurs in oxidoreductase active sites and often is catalytically superior to cysteine (Cys). However, Sec is used very selectively in proteins and organisms. The wide distribution of Sec and its restricted use have not been explained.  相似文献   

12.
Amino Acids - Selenocysteine (Sec) residue cannot be directly attached to a peptide sequence unless the selenol form is protected beforehand and several problems have been reported in the...  相似文献   

13.
Selenocysteine is present in a variety of proteins and catalyzes the oxidation of thiols to disulfides and the reduction of disulfides to thiols. Here, we compare the kinetic and thermodynamic properties of cysteine with its selenium-containing analogon, selenocysteine. Reactions of simple selenols at pH 7 are up to four orders of magnitude faster than their sulfur analogs, depending on reaction type. In redox-related proteins, the use of selenium instead of sulfur can be used to tune electrode, or redox, potentials. Selenocysteine could also have a protective effect in proteins because its one-electron oxidized product, the selanyl radical, is not oxidizing enough to modify or destroy proteins, whereas the cysteine-thiyl radical can do this very rapidly.  相似文献   

14.
Selenium is an essential trace element incorporated into selenoproteins as selenocysteine. Selenocysteine (Sec) lyases (SCLs) and cysteine (Cys) desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys, respectively, and generally accept both substrates. Intriguingly, human SCL (hSCL) is specific for Sec even though the only difference between Sec and Cys is a single chalcogen atom.The crystal structure of hSCL was recently determined and gain-of-function protein variants that also could accept Cys as substrate were identified. To obtain mechanistic insight into the chemical basis for its substrate discrimination, we here report time-resolved spectroscopic studies comparing the reactions of the Sec-specific wild-type hSCL and the gain-of-function D146K/H389T variant, when given Cys as a substrate. The data are interpreted in light of other studies of SCL/CD enzymes and offer mechanistic insight into the function of the wild-type enzyme. Based on these results and previously available data we propose a reaction mechanism whereby the Sec over Cys specificity is achieved using a combination of chemical and physico-mechanical control mechanisms.  相似文献   

15.
Selmer M  Su XD 《The EMBO journal》2002,21(15):4145-4153
SelB is an elongation factor needed for the co-translational incorporation of selenocysteine. Selenocysteine is coded by a UGA stop codon in combination with a specific downstream mRNA hairpin. In bacteria, the C-terminal part of SelB recognizes this hairpin, while the N-terminal part binds GTP and tRNA in analogy with elongation factor Tu (EF-Tu). We present the crystal structure of a C-terminal fragment of SelB (SelB-C) from Moorella thermoacetica at 2.12 A resolution, solved by a combination of selenium and yttrium multiwavelength anomalous dispersion. This 264 amino acid fragment contains the entire C-terminal extension beginning after the EF-Tu-homologous domains. SelB-C consists of four similar winged-helix domains arranged into the shape of an L. This is the first example of winged-helix domains involved in RNA binding. The location of conserved basic amino acids, together with data from the literature, define the position of the mRNA-binding site. Steric requirements indicate that a conformational change may occur upon ribosome interaction. Structural observations and data in the literature suggest that this change happens upon mRNA binding.  相似文献   

16.
Selenocysteine insertion during selenoprotein biosynthesis begins with the aminoacylation of selenocysteine tRNA[ser]sec with serine, the conversion of the serine moiety to selenocysteine, and the recognition of specific UGA codons within the mRNA. Selenocysteine tRNA[ser]sec exists as two major forms, differing by methylation of the ribose portion of the nucleotide at the wobble position of the anticodon. The levels and relative distribution of these two forms of the tRNA are influenced by selenium in mammalian cells and tissues. We have generated Chinese hamster ovary cells that exhibit increased levels of tRNA[ser]sec following transfection of the mouse tRNA[ser]sec gene. The levels of selenocysteine tRNA[ser]sec in transfectants increased proportionally to the number of stably integrated copies of the tRNA[ser]sec gene. Although we were able to generate transfectants overproducing tRNA[ser]sec by as much as tenfold, the additional tRNA was principally retained in the unmethylated form. Selenium supplementation could not significantly affect the relative distributions of the two major selenocysteine tRNA[ser]sec isoacceptors. In addition, increased levels of tRNA[ser]sec did not result in measurable alterations in the levels of selenoproteins, including glutathione peroxidase.  相似文献   

17.
18.
Wang  Kun  Fu  Xiao-ting  Li  Yuan  Hou  Ya-jun  Yang  Ming-feng  Sun  Jing-yi  Yi  Shu-ying  Fan  Cun-dong  Fu  Xiao-yan  Zhai  Jing  Sun  Bao-liang 《Neurochemical research》2016,41(6):1439-1447
Neurochemical Research - Selenocysteine (SeC) a natural available selenoamino acid exhibits novel anticancer activities against human cancer cell lines. However, the growth inhibitory effect and...  相似文献   

19.
Specific occurrence of selenium in enzymes and amino acid tRNAs   总被引:9,自引:0,他引:9  
In contrast to the widespread ability of bacteria, plants, and animals to incorporate selenium nonspecifically into proteins in the form of selenomethionine residues, the selenoamino acid selenocysteine occurs as a highly specific component of a few selenium-dependent enzymes. Selenocysteine has been identified in glycine reductase, formate dehydrogenase, and hydrogenase of bacterial origin and glutathione peroxidase from mammalian and avian sources. In these enzymes there is evidence that the selenol group, which is largely ionized at physiological pH, functions as a redox center. It now seems clear, from studies with both prokaryotes and eukaryotes, that the UGA opal stop codon is used to specify the cotranslational insertion of selenocysteine into proteins. The factors that allow this unusual use of the stop codon are, however, unknown. The occurrence of selenium as a normal constituent of several bacterial tRNA species has been established. The presence of a selenonucleoside, 5-methylaminomethyl-2-selenouridine, in the first or wobble position of the anticodons of certain glutamate and lysine iso-acceptor species influences codon-anticodon interaction and thus may serve to regulate translational processes. The biosynthesis of the selenonucleoside appears to involve the ATP-dependent activation of the sulfur in a preformed 5-methylaminomethyl-2-thiouridine residue in tRNA and replacement of the sulfur with selenium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号