首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arterial smooth muscle cells (SMCs) are present in the elastic lamina-containing media, suggesting that the elastic laminae may regulate the development of SMCs. Here, we investigated the role of elastic laminae in regulating the formation of SM alpha actin filaments in mouse CD34+ bone marrow cells and the role of a protein tyrosine phosphatase, SH2 domain-containing protein tyrosine phosphatase (SHP)-1, in the mediation of this process. Mouse CD34+ bone marrow cells were isolated by magnetic separation and used for assessing the influence of elastic laminae and collagen matrix on the formation of SM alpha actin filaments. CD34+ cells with transgenic SHP-1 knockout or siRNA-mediated SHP-1 knockdown were used to assess the role of SHP-1 in mediating the formation of SM alpha actin filaments. In cell culture tests, elastic laminae, but not collagen matrix, stimulated the formation of SM alpha actin filaments in CD34+ cells. The phosphatase SHP-1 mediated the stimulatory effect of elastic laminae. The interaction of CD34+ cells with elastic laminae, but not with collagen matrix, induced activation of SHP-1. The suppression of SHP-1 by transgenic SHP-1 knockout or siRNA-mediated SHP-1 knockdown significantly reduced the formation of SM alpha actin filaments in CD34+ cells cultured on elastic laminae. The in vitro observations were confirmed by using an in vivo model of implantation of elastic lamina and collagen matrix scaffolds into the aorta. These observations suggest that elastic laminae stimulate the formation of SM alpha actin filaments in CD34+ bone marrow cells and SHP-1 mediates the stimulatory effect of elastic laminae.  相似文献   

2.
The Lyn tyrosine kinase negatively regulates neutrophil integrin signaling   总被引:5,自引:0,他引:5  
The Src family kinase Lyn has been shown to play both stimulatory and inhibitory roles within several hemopoietic cell types. In this study, we investigated the role played by Lyn in neutrophil integrin signaling. Loss of Lyn resulted in a hyperresponsive phenotype on engagement of surface integrins at low valency. Lyn(-/-) neutrophils displayed enhanced respiratory burst, secondary granule release, and a hyperadhesive phenotype when adherent to surfaces coated with either cellular counterreceptors or extracellular matrix proteins. In contrast, Lyn-deficient and wild-type cells expressed similar levels of surface integrins and responded equivalently to activating agents in suspension, indicating that the enhanced responses of lyn(-/-) cells was specific to the integrin signaling pathways. Lyn-deficient macrophages also displayed a hyperadhesive phenotype. Biochemical analysis of macrophages from lyn(-/-) mice revealed that Lyn plays an essential role in the adhesion-dependent phosphorylation of the immunoreceptor tyrosine-based inhibitory motif of the inhibitory receptors SIRP1alpha and PIR-B, which in turn recruit the phosphatase SHP-1. These observations suggest that reduced mobilization of SHP-1 to the membrane in lyn(-/-) neutrophils results in a hyperadhesive and hyperactive phenotype. This hypothesis is further supported by the fact that neutrophils from me(v)/me(v) mice, which have significantly reduced SHP-1 activity, are also hyperresponsive following integrin engagement. This is the first direct evidence using primary leukocytes from lyn(-/-) mice that this kinase functions as a negative regulator in integrin signaling.  相似文献   

3.
Signal-regulatory proteins (SIRPs) are cell-surface glycoproteins expressed on myeloid and neural cells that have been shown to recruit SH2 domain-containing protein phosphatase 1 (SHP-1) and SHP-2 and to regulate receptor tyrosine kinase-coupled signaling. One SIRP of unknown function, designated SIRP beta 1, contains a short cytoplasmic domain that lacks sequence motifs capable of recruiting SHP-1 and SHP-2. Using a SIRP-specific mAb, we show that SIRP beta 1 is expressed in monocytes and dendritic cells and associates with the signal transduction molecule DAP12. SIRP beta 1/DAP12 complex formation was required for efficient cell-surface expression of SIRP beta 1. Stimulation of this complex induced tyrosine phosphorylation, mitogen-activated protein kinase activation, and cellular activation. Thus, SIRP beta 1 is a new DAP12-associated receptor involved in the activation of myeloid cells.  相似文献   

4.
The lung of the tight-skin (TSK) mouse was characterized by enlargement of the air spaces. Elastin in the alveolar walls of the TSK mouse exhibited fragmentation. The aorta of the TSK mouse was characterized by marked hyperplasia of loose connective tissue in the adventitia. Collagen fibres and ruthenium red-positive materials were markedly increased. Microfibrils surrounding elastin in the adventitia of the aorta were not clear in the TSK mouse. In the lung of the beta-aminopropionitrile (BAPN)-fed mouse, enlargement of the alveolar air spaces was not prominent compared with the TSK mouse. Elastic fibres in the alveolar walls did not show the fragmentation observed in the TSK mouse, and microfibrils surrounding elastin were clearly observed. However, elastic laminae in the media of the BAPN-fed mouse aorta were swollen and fragmented. Elastic fibres in the adventitia exhibited a normal appearance and microfibrils surrounding elastin in the adventitia were clearly observed. The results suggest that the mechanism of the connective tissue abnormality in the TSK mouse is different from that of BAPN, which inhibits the activity of lysyl oxidase. The abnormality of elastin and microfibrils surrounding elastin in the TSK mouse probably plays a role in the deformity or degradation of elastic fibres and the structural changes of the lung.  相似文献   

5.
Tenascin is an extracellular matrix protein found in adults in T cell-dependent areas of lymphoid tissues, sites of inflammation, and tumors. We report here that it inhibited chemotaxis of chemoattractant-stimulated human monocytes and chemoattractant-stimulated polymorphonuclear leukocytes (PMN) through three-dimensional gels composed of collagen I or Matrigel, and chemotaxis of leukotriene B4-stimulated PMN through fibrin gels. The inhibitory effect of tenascin on monocyte or PMN chemotaxis through these matrices was reversed by Abs directed against alpha5beta1 integrins or by a peptide (GRGDSP) that binds to beta1 integrins. Tenascin did not affect leukotriene B4- or fMLP-stimulated expression of beta1 or beta2 integrins, but did exert a small inhibitory effect on PMN adhesion and closeness of apposition to fibrin(ogen)-containing surfaces. Thus, alpha5beta1 integrins mediate the inhibitory effect of tenascin on monocyte and PMN chemotaxis, without promoting close apposition between these leukocytes and surfaces coated with tenascin alone or with tenascin bound to other matrix proteins. This contrasts with the role played by alpha5beta1 integrins in promoting close apposition between fMLP-stimulated PMN and fibrin containing surfaces, thereby inhibiting chemotaxis of fMLP-stimulated PMN through fibrin gels. Thus, chemoattractants and matrix proteins regulate chemotaxis of phagocytic leukocytes by at least two different mechanisms: one in which specific chemoattractants promote very tight adhesion of leukocytes to specific matrix proteins and another in which specific matrix proteins signal cessation of migration without markedly affecting strength of leukocyte adhesion.  相似文献   

6.
Signal regulatory protein α (SIRPα) is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Wild-type (WT) C57BL/6 mice are known to be resistant to Leishmania major infection. We here found that C57BL/6 mice that express a mutant version of SIRPα lacking most of the cytoplasmic region manifested increased susceptibility to L. major infection, characterized by the marked infiltration of inflammatory cells in the infected lesions. The numbers of the parasites in footpads, draining lymph nodes and spleens were also markedly increased in the infected SIRPα mutant mice, compared with those for the infected WT mice. In addition, soluble leishmanial antigen-induced production of IFN-γ by splenocytes of the infected SIRPα mutant mice was markedly reduced. By contrast, the ability of macrophages of SIRPα mutant mice to produce nitric oxide in response to IFN-γ was almost equivalent to that of macrophages from WT mice. These results suggest that SIRPα is indispensable for protective immunity against L. major by the induction of Th1 response.  相似文献   

7.
The activities of vascular cells, including adhesion, proliferation, and migration, are mediated by extracellular matrix components, including collagen matrix and elastic fibers or laminae. Whereas the collagen matrix stimulates vascular cell adhesion, proliferation, and migration, the elastic laminae inhibit these activities. Coordinated regulation of cell activities by these matrix components is an essential process for controlling the development and remodeling of the vascular system. This article summarizes recent development on the role of arterial elastic laminae in regulating the development of smooth muscle-like cells from bone marrow-derived progenitor cells as well as in mediating cell adhesion, proliferation, and migration with a focus on the molecular mechanisms and physiological significance.  相似文献   

8.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a newly assigned member of the Ig immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. To test whether PECAM-1 is capable of delivering inhibitory signals in B cells and the functional requirement of protein-tyrosine phosphatases (PTPs) for this inhibitory signaling, we generated chimeric Fc gamma RIIB1-PECAM-1 receptors containing the extracellular and transmembrane portions of murine Fc gamma RIIB1 and the cytoplasmic domain of human PECAM-1. These chimeric receptors were stably expressed in chicken DT40 B cells either as wild-type or mutant cells deficient in SHP-1(-/-), SHP-2(-/-), SHIP(-/-), or SHP-1/2(-/-) and then assessed for their ability to inhibit B cell Ag receptor (BCR) signaling. Coligation of wild-type Fc gamma RIIB1-PECAM-1 with BCR resulted in inhibition of intracellular calcium release, suggesting that the cytoplasmic domain of PECAM-1 is capable of delivering an inhibitory signal that blocks BCR-mediated activation. This PECAM-1-mediated inhibitory signaling correlated with tyrosine phosphorylation of the Fc gamma RIIB1-PECAM-1 chimera, recruitment of SHP-1 and SHP-2 PTPs by the phosphorylated chimera, and attenuation of calcium mobilization responses. Mutational analysis of the two tyrosine residues, 663 and 686, constituting the immunoreceptor tyrosine-based inhibitory motifs in PECAM-1 revealed that both tyrosine residues play a crucial role in the inhibitory signal. Functional analysis of various PTP-deficient DT40 B cell lines stably expressing wild-type chimeric Fc gamma RIIB1-PECAM-1 receptor indicated that cytoplasmic Src homology 2-domain-containing phosphatases, SHP-1 and SHP-2, were both necessary and sufficient to deliver inhibitory negative regulation upon coligation of BCR complex with inhibitory receptor.  相似文献   

9.
Vitamin K-dependent matrix Gla protein (MGP) has been suggested to play a role in the inhibition of soft-tissue calcification. Here we report the expression of recombinant prokaryotic MGP as part of a fusion protein and the preparation of two antibodies that specifically recognize MGP. Monoclonal antibodies were raised against synthetic peptides homologous to the sequences 3-15 and 63-75 of human MGP. Both antibodies recognize recombinant and synthetic human MGP. Immunohistochemical analysis showed that MGP was associated with the extracellular matrix of noncalcified bone and with chondrocytes in cartilage. In the healthy human arterial vessel wall, MGP antigen was demonstrated in association with smooth muscle cells and elastic laminae of the tunica media and with the extracellular matrix of the adventitia. Colocalization with the elastic laminae was lost at sites of medial calcification; in both human and rat arteries, high amounts of MGP were found in the extracellular matrix at borders of intimal and medial calcification. Our data demonstrate the close association between MGP and calcification. It is suggested that undercarboxylated MGP is biologically inactive and that poor vascular vitamin K status may form a risk factor for vascular calcification.  相似文献   

10.
Signaling through the B cell antigen receptor (BCR) is negatively regulated by the SH2 domain-containing protein-tyrosine phosphatase SHP-1, which requires association with tyrosine-phosphorylated proteins for activation. Upon BCR ligation, SHP-1 has been shown to associate with the BCR, the cytoplasmic protein-tyrosine kinases Lyn and Syk, and the inhibitory co-receptors CD22 and CD72. How SHP-1 is activated by BCR ligation and regulates BCR signaling is, however, not fully understood. Here we demonstrate that, in the BCR-expressing myeloma line J558L mu 3, CD72 expression reduces the BCR ligation-induced phosphorylation of the BCR component Ig alpha/Ig beta and its cytoplasmic effectors Syk and SLP-65. Substrate phosphorylation was restored by expression of dominant negative mutants of SHP-1, whereas the SHP-1 mutants failed to enhance phosphorylation of the cellular substrates in the absence of CD72. This indicates that SHP-1 is efficiently activated by CD72 but not by other pathways in J558L mu m3 cells and that inhibition of SHP-1 specifically activated by CD72 reverses CD72-induced dephosphorylation of cellular substrates in these cells. Taken together, BCR-induced SHP-1 activation is likely to require inhibitory co-receptors such as CD72, and SHP-1 appears to mediate the negative regulatory effect of CD72 on BCR signaling by dephosphorylating Ig alpha/Ig beta and its downstream signaling molecules Syk and SLP-65.  相似文献   

11.
Arterial injury triggers an inflammatory response in part mediated by induction of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and is implicated in neointimal thickening. Since HDL is known to reduce cytokine-activated VCAM-1 expression, we tested the hypothesis that VCAM-1 expression and neontimal thickening following arterial injury are inhibited by reconstituted human HDL containing plasma-derived apoA-1 (rHDL). We used the carotid cuff injury in apoE (-/-) mice fed high cholesterol. Mice received rHDL (40 mg/kg) intravenously every other day for 3 weeks. Compared to control, rHDL treatment inhibited neointima formation (0. 008 +/- 0.004 mm(2) vs. 0.037 +/- 0.019 mm(2); P < 0.01) 21 days after injury, reduced VCAM-1 expression, and decreased monocyte/macrophage infiltration as assessed by histomorphometric analysis within the first week after injury. These changes occurred without any effect on plasma total and HDL cholesterol levels as well as the arterial tissue cholesterol levels. rHDL treatment also reduced the formation of modified lipoprotein in the arterial wall compared to control within the first week after injury. This finding suggests an antioxidant effect of rHDL associated with reduced VCAM-1 expression and neointimal formation after arterial injury.  相似文献   

12.
Monocyte/macrophage accumulation plays a critical role during progression of cardiovascular diseases, such as atherosclerosis. Our previous studies demonstrated that retrovirally mediated expression of the versican V3 splice variant (V3) by arterial smooth muscle cells (ASMCs) decreases monocyte adhesion in vitro and macrophage accumulation in a model of lipid-induced neointimal formation in vivo. We now demonstrate that V3-expressing ASMCs resist monocyte adhesion by altering the composition of the microenvironment surrounding the cells by affecting multiple signaling pathways. Reduction of monocyte adhesion to V3-expressing ASMCs is due to the generation of an extracellular matrix enriched in elastic fibers and depleted in hyaluronan, and reduction of the proinflammatory cell surface vascular cell adhesion molecule 1 (VCAM1). Blocking these changes reverses the protective effect of V3 on monocyte adhesion. The enhanced elastogenesis induced by V3 expression is mediated by TGFβ signaling, whereas the reduction in hyaluronan cable formation induced by V3 expression is mediated by the blockade of epidermal growth factor receptor and NFκB activation pathways. In addition, expression of V3 by ASMCs induced a marked decrease in NFκB-responsive proinflammatory cell surface molecules that mediate monocyte adhesion, such as VCAM1. Overall, these results indicate that V3 expression by ASMCs creates a microenvironment resistant to monocyte adhesion via differentially regulating multiple signaling pathways.  相似文献   

13.
The nontransmembrane protein tyrosine phosphatase SHP-2 plays a critical role in growth factor and cytokine signaling pathways. Previous studies revealed that a fraction of SHP-2 moves to focal contacts upon integrin engagement and that SHP-2 binds to SHP substrate 1 (SHPS-1)/SIRP-1alpha, a transmembrane glycoprotein with adhesion molecule characteristics (Y. Fujioka et al., Mol. Cell. Biol. 16:6887-6899, 1996; M. Tsuda et al., J. Biol. Chem. 273:13223-13229). Therefore, we asked whether SHP2-SHPS-1 complexes participate in integrin signaling. SHPS-1 tyrosyl phosphorylation increased upon plating of murine fibroblasts onto specific extracellular matrices. Both in vitro and in vivo studies indicate that SHPS-1 tyrosyl phosphorylation is catalyzed by Src family protein tyrosine kinases (PTKs). Overexpression of SHPS-1 in 293 cells potentiated integrin-induced mitogen-activated protein kinase (MAPK) activation, and potentiation required functional SHP-2. To further explore the role of SHP-2 in integrin signaling, we analyzed the responses of SHP-2 exon 3(-/-) and wild-type cell lines to being plated on fibronectin. Integrin-induced activation of Src family PTKs, tyrosyl phosphorylation of several focal adhesion proteins, MAPK activation, and the ability to spread on fibronectin were defective in SHP-2 mutant fibroblasts but were restored upon SHP-2 expression. Our data suggest a positive-feedback model in which, upon integrin engagement, basal levels of c-Src activity catalyze the tyrosyl phosphorylation of SHPS-1, thereby recruiting SHP-2 to the plasma membrane, where, perhaps by further activating Src PTKs, SHP-2 transduces positive signals for downstream events such as MAPK activation and cell shape changes.  相似文献   

14.
CD155 (poliovirus receptor) localizes in cell-matrix adhesions and cell-cell junctions, but its role in the regulation of cell adhesion and cell motility has not been investigated. We identified a conserved immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic domain of human CD155alpha. The ITIM was tyrosine-phosphorylated upon binding of anti-CD155 monoclonal antibody D171, poliovirus, and DNAM-1 (CD226) to human CD155alpha, and recruited SH2-domain-containing tyrosine phosphatase-2 (SHP-2). After CD155alpha stimulation with its ligands, cell adhesion was inhibited and cell motility was enhanced, effects that were associated with the phosphorylation of ITIM by Src kinases and accompanied by dephosphorylation of focal adhesion kinase and paxillin. These effects were abolished by introducing a point-mutation in Y398F into the ITIM of CD155alpha and by coexpression of a dominant negative SHP-2 mutant with CD155alpha. These results suggest that CD155alpha plays a role in the regulation of cell adhesion and cell motility.  相似文献   

15.
Stimulation of alpha1-adrenoceptors (ARs) induces proliferation, hypertrophy, and migration of vascular smooth muscle cells and adventitial fibroblasts in cell and organ culture. In vivo studies have confirmed this direct trophic action and found that endogenous catecholamines contribute to neointimal formation and wall hypertrophy induced by mechanical injury. In murine carotid artery, these effects are mediated by alpha 1B-ARs, whereas alpha 1D-ARs mediate contraction and alpha 1A-ARs are not expressed. Herein, we examined whether catecholamines also contribute to arterial wall growth in a noninjury model, i.e., flow-mediated remodeling. In wild-type mice or mice deficient in norepinephrine and epinephrine synthesis [dopamine beta-hydroxylase knockout (DBH-KO)], all distal branches of the left carotid artery (LC) except the thyroid artery were ligated to reduce flow in the LC and increase flow in the right carotid artery (RC). Twenty-one days later, negative hypertrophic remodeling of the LC [i.e., -20% (decrease) in lumen area, -2% in circumference of the external elastic lamina (CEEL), +98% (increase) in thickness of the intima media, and +71% in thickness for adventitia; P < 0.01 vs. sham ligation] and positive eutrophic remodeling of the RC [+23% in lumen area, +11% in CEEL; P < 0.01 vs. sham ligation] were inhibited in DBH-KO mice [LC: +10% intima media and +3% adventitia; RC: +9% lumen area and +3% CEEL]. This inhibition was associated with reduced proliferation in the RC and reduced apoptosis and leukocyte accumulation in the RC and LC when examined 5 days after ligation. Carotid remodeling in alpha 1D-AR-knockout mice evidenced little or no inhibition, which suggests dependence on alpha 1B-ARs. These findings suggest that catecholamine-induced trophic activity contributes to both flow-mediated negative remodeling and adaptive positive arterial remodeling.  相似文献   

16.
The protein tyrosine phosphatase SHP-1 is a critical regulator of macrophage biology, but its detailed mechanism of action remains largely undefined. SHP-1 associates with a 130-kDa tyrosyl-phosphorylated species (P130) in macrophages, suggesting that P130 might be an SHP-1 regulator and/or substrate. Here we show that P130 consists of two transmembrane glycoproteins, which we identify as PIR-B/p91A and the signal-regulatory protein (SIRP) family member BIT. These proteins also form separate complexes with SHP-2. BIT, but not PIR-B, is in a complex with the colony-stimulating factor 1 receptor (CSF-1R), suggesting that BIT may direct SHP-1 to the CSF-1R. BIT and PIR-B bind preferentially to substrate-trapping mutants of SHP-1 and are hyperphosphorylated in macrophages from motheaten viable mice, which express catalytically impaired forms of SHP-1, indicating that these proteins are SHP-1 substrates. However, BIT and PIR-B are hypophosphorylated in motheaten macrophages, which completely lack SHP-1 expression. These data suggest a model in which SHP-1 dephosphorylates specific sites on BIT and PIR-B while protecting other sites from dephosphorylation via its SH2 domains. Finally, BIT and PIR-B associate with two tyrosyl phosphoproteins and a tyrosine kinase activity. Tyrosyl phosphorylation of these proteins and the level of the associated kinase activity are increased in the absence of SHP-1. Our data suggest that BIT and PIR-B recruit multiple signaling molecules to receptor complexes, where they are regulated by SHP-1 and/or SHP-2.  相似文献   

17.
The transmembrane glycoprotein signal regulatory protein/SHP2-substrate (SIRP1alpha/SHPS-1) has been implicated in growth factor- and cell adhesion-induced signalling. Here we report on the contribution of SIRP1alpha to IL-6 type cytokine signalling. SIRP1alpha binds the protein tyrosine phosphatase SHP2 upon treatment with interleukin-6 in a stimulation-dependent manner. Mouse embryonic fibroblasts expressing a SIRP1alpha protein which lacks the intracellular part show enhanced SHP2 phosphorylation and ERK1/2 activation in response to IL-6, suggesting that SIRP1alpha affects IL-6-signalling through SHP2. Whereas SHP2 phosphorylation is enhanced in SIRP1alpha-deficient cells STAT3 activation is delayed and STAT3-dependent gene induction is reduced which correlates with reduced STAT3 serine phosphorylation. Our results indicate that SIRP1alpha contributes to IL-6 signalling by counteracting SHP2 phosphorylation which consequently affects ERK-activation and STAT3-dependent transactivation as well as target gene expression. Our observations will help to understand the tight balance of MAPK- and STAT3-activation in response to IL-6 which was found to be misbalanced in many autoimmune diseases, inflammatory proliferative diseases and cancer.  相似文献   

18.
Recent studies have shown that, in addition to its role as an adhesion receptor, platelet endothelial cell adhesion molecule 1/CD31 becomes phosphorylated on tyrosine residues Y663 and Y686 and associates with protein tyrosine phosphatases SHP-1 and SHP-2. In this study, we screened for additional proteins which associate with phosphorylated platelet endothelial cell adhesion molecule 1, using surface plasmon resonance. We found that, besides SHP-1 and SHP-2, platelet endothelial cell adhesion molecule 1 binds the cytoplasmic signalling proteins SHIP and PLC-gamma1 via their Src homology 2 domains. Using two phosphopeptides, NSDVQpY663TEVQV and DTETVpY686SEVRK, we demonstrate differential binding of SHP-1, SHP-2, SHIP and PLC-gamma1. All four cytoplasmic signalling proteins directly associate with cellular platelet endothelial cell adhesion molecule 1, immunoprecipitated from pervanadate-stimulated THP-1 cells. These results suggest that overlapping immunoreceptor tyrosine-based inhibition motif/immunoreceptor tyrosine-based activation motif-like motifs within platelet endothelial cell adhesion molecule 1 mediate differential interactions between the Src homology 2 containing signalling proteins SHP-1, SHP-2, SHIP and PLC-gamma1.  相似文献   

19.
The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.  相似文献   

20.
Killer cell immunoglobulin-like receptors (KIR) inhibit the cytotoxic activity of natural killer (NK) cells by recruitment of the tyrosine phosphatase SHP-1 to immunoreceptor tyrosine-based inhibition motif (ITIM) sequences in the KIR cytoplasmic tail [1]. The precise steps in the NK activation pathway that are inhibited by KIR are yet to be defined. Here, we have studied whether the initial step of adhesion molecule LFA-1-dependent adhesion to target cells was altered by the inhibitory signal. Using stable expression of an HLA-C-specific KIR in the NK cell line YTS [2] and a two-color flow cytometry assay for conjugate formation, we show that adhesion to a target cell expressing cognate HLA-C was disrupted by KIR engagement. Conjugate formation was abruptly interrupted by KIR within less than 5 minutes. Inhibition of adhesion to target cells was mediated by a chimeric KIR molecule carrying catalytically active SHP-1 in place of its cytoplasmic tail. These results suggest that other ITIM-bearing receptors, many of which have no known function, may regulate adhesion in a wide variety of cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号