首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

2.
The pentapeptide leucine enkephalin induced down-regulation of enkephalin receptors in neuroblastoma-glioma NG108-15 hybrid cells in a reversible fashion, whereas the stable enkephalin analogue D-Ala2-Met-enkephalinamide (AMEA), and the potent opiate alkaloid, etorphine, had a prolonged effect. The opiate alkaloid, morphine, which has low affinity to delta-type enkephalin receptors of these cells did not induce down-regulation, whereas AMEA decreased the binding of both opiate agonists and antagonists but had no effect on the binding of the alpha 2-adrenergic ligand, [3H]yohimbine. From several experiments that were designed to remove the tightly bound AMEA, and from experiments with solubilized receptor we ruled out the possibility that the decreased binding capacity of enkephalin-treated cells reflects only receptor masking. The study suggests that down-regulation of enkephalin receptors that may also occur in vivo can account for some of the abnormal physiological responses of subjects treated chromically with opiates. However, since opiates from the morphine type can induce opiate tolerance in vivo, but not down-regulation of enkephalin receptors in the cultured cells, we suggest that down-regulation of delta-type opiate receptors may not be prerequisite for the development of the physiological tolerance/dependence on these alkaloids.  相似文献   

3.
Multiple opiate receptors: emerging concepts   总被引:9,自引:0,他引:9  
R S Zukin  S R Zukin 《Life sciences》1981,29(26):2681-2690
Increasing biochemical evidence indicates that the wide spectrum of opiate pharmacological actions are mediated via heterogeneous classes of receptors. μ receptors have been identified as the high affinity sites where morphine-like opiates exert their analgesic effects. δ receptors have a somewhat different CNS distribution and have been identified as sites relatively selective for the naturally occuring enkephalins. Recent biochemical studies provide evidence for two additional classes of opiate receptor sites which were originally proposed on the basis of physiological studies. Ketocyclazocine-like opiates produce their unique ataxic and sedative effects via interaction with K receptors, and SKF-10,047 (N-allylnorcyclazocine) and related opiates produce stimulant and psychotomimetic effects via interactions with σ receptors.Many opiate drugs interact at multiple receptor sites. Thus, the constellation of neuropharmacological actions of a particular opioid ligand may reflect its various potencies at a combination of μ, δ, K, and σ receptors.  相似文献   

4.
The pentapeptide leucine enkephalin induced down-regulation of enkephalin receptors in neuroblastoma-glioma NG108-15 hybrid cells in a reversible fashion, whereas the stable enkephalin analogue, d-Ala2-Met-enkephalinamide (AMEA), and the potent opiate alkaloid, etorphine, had a prolonged effect. The opiate alkaloid, morphine, which has low affinity to δ-type enkephalin receptors of these cells did not induce down-regulation, whereas AMEA decreased the binding of both opiate agonists and antagonists but had no effect on the binding of the α2-adrenergic ligand, [3H]yohimbine. From several experiments that were designed to remove the tightly bound AMEA, and from experiments with solubilized receptor we ruled out the possibility that the decreased binding capacity of enkephalin-treated cells reflects only receptor masking. The study suggests that down-regulation of enkephalin receptors that may also occur in vivo can account for some of the abnormal physiological responses of subjects treated chromically with opiates. However, since opiates from the morphine type can induce opiate tolerance in vivo, but not down-regulation of enkephalin receptors in the cultured cells, we suggest that down-regulation of δ-type opiate receptors may not be prerequisite for the development of the physiological tolerance/dependence on these alkaloids.  相似文献   

5.
We have developed a radioreceptor assay for opiates based on the ability of the plasma and CSF content of these drugs to compete for the binding of 3H-buprenorphine to opiate receptors in rat forebrain membranes. Since plasma proteins significantly inhibit total 3H-buprenorphine binding, and sodium ions reduce the affinity of opiate agonists for the receptor, it was necessary to extract opiates into an organic solvent (ether). The radioreceptor assay is particularly sensitive to buprenorphine and morphine, detecting these compounds at low picogram levels. The assay is simple to perform since 50 samples can be processed in a day, and is specific in that other drugs employed during anaesthesia such as benzodiazepines do not compete with 3H-buprenorphine for the opiate receptor. The extraction and binding techniques described should be applicable to other 3H-ligands which have high affinity for opiate receptors.  相似文献   

6.
J J Frost  A C Smith  H N Wagner 《Life sciences》1986,38(17):1597-1606
The displacement of 3H-diprenorphine from opiate receptors by mu-selective opiates was measured in the mouse striatum and thalamus in vivo. In addition, the regional distribution of opiate receptor binding using 3H-diprenorphine, 3H-naloxone and 3H-lofentanil was measured. The displacement of 3H-diprenorphine by naloxone and carfentanil in vivo showed no differences in the striatum and thalamus suggesting that 3H-diprenorphine binds only to one opiate receptor subtype in vivo. This finding is substantiated by the observation that the mu selective ligands 3H-naloxone and 3H-lofentanil have the same in vivo distribution of receptor binding as 3H-diprenorphine. The implication of these findings for PET imaging of opiate receptor subtypes is discussed.  相似文献   

7.
On the specificity of naloxone as an opiate antagonist.   总被引:17,自引:0,他引:17  
J Sawynok  C Pinsky  F S LaBella 《Life sciences》1979,25(19):1621-1632
Since the discovery of endogenous opioid peptides in brain (68,69,97,113, 128) and the pituitary gland (26,81,105,125) there has been considerable interest in their possible roles in a variety of physiological and pharmacological processes. Many studies have used antagonism by naloxone as a criterion for implicating endogenous opiates in a process, assuming that naloxene has no pharmacological actions other than those related to blockade of opiate receptors. The doses of naloxene used are often higher than those required to antagonize the analgesic and other effects of morphine. However, multiple forms of opiate receptors are present in nervous tissue and higher concentrations of naloxene are required to antagonize effects mediated by some of these receptors (83). Although the earlier literature supports the assumption that the effects of naloxene are due to the blockade of opiate receptors (87), there are an increasing number of reports which indicate that naloxene may have pharmacological actions unrelated to opiate receptor blockade. The subsequent review serves to emphasize that antagonism by naloxene is a necessary but not sufficient criterion for invoking the mediation of a response by an endogenous opiate (61). Additional lines of evidence which serve to strengthen the conclusion that endogenous opiates mediate a process will be considered.  相似文献   

8.
Monoclonal antibodies to enkephalins were established by immunization of mice with met-enkephalin, leu-enkephalin or both. Twenty-three clones with a high titer were classified into 6 types according to the binding properties to enkephalins and their derivatives. Antibody LM 239 showed binding characteristics similar to opiate receptor. It has a very high affinity to enkephalins and their derivatives which have a potent opioid activity, but a low affinity to enkephalin derivatives which devoid of opioid activity. The binding of 3H-met-enkephalin to the antibody was inhibited by naloxone and morphine, although the ID50 values were considerably higher than the Ka values of the alkaloids to opiate receptor.  相似文献   

9.
The aim of the present study has been to characterize the regulation by opiates of 45Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. We have demonstrated that K+-induced depolarization, in the presence of the Ca2+ channel agonist Bay K8644, stimulated Ca2+ influx (3-4-fold) via the dihydropyridine class of voltage-dependent Ca2+ channels. While mu and delta opiates had no effect, kappa opiate agonists (e.g. U50488, dynorphin) profoundly depressed the stimulated Ca2+ influx (86% inhibition at 100 microM U50488). The kappa agonist action was stereospecific and could be reversed by the opiate antagonist naloxone. The inhibition produced by kappa agonists was greatly diminished following pertussis toxin treatment, and this effect was accompanied by toxin-induced ADP-ribosylation of a 40-41-kDa protein. This suggests that kappa opiate receptors are negatively coupled to voltage-dependent Ca2+ channels, via a pertussis toxin-sensitive GTP-binding protein. Basal 45Ca2+ uptake, stimulated by adenylate cyclase activators (forskolin and cholera toxin), was potently inhibited by kappa opiates suggesting that, under conditions of neurohormonal stimulation of adenylate cyclase, kappa receptors are coupled to Ca2+ channels indirectly via the adenylate cyclase complex. In addition, cAMP-independent coupling pathways may also be involved.  相似文献   

10.
It is possible to localize opiate receptors by histochemical methods. They appear in high densities in anatomical areas associated with physiologic functions altered by opiates. They appear to mediate inhibitory responses; some of them, in certain regions could be involved in axo-axonic synapses. The immunohistochemical studies as well as the electrophysiologic results are compatible with the view that the enkephalins are the endogenous substrates for the opiate receptors.  相似文献   

11.
Cationic local anesthetics inhibit competitively the stereospecific binding of naltrexone and etorphine on the mouse brain opiate receptor. In contrast, the inhibition produced by benzocaine, a non-cationic local anesthetic, is non-competitive. It is suggested that the cationic group of local anesthetics interacts with a specific anionic binding site on the opiate receptor and that there are certain structural similarities between the receptors for both types of drugs. It is evident from these studies that several drugs can unspecifically modify the pharmacologic effects of opiates and that they could be useful tools to further characterize the opiate receptor.  相似文献   

12.
Mice which had been submitted to a chronic schedule of warm water swimming exhibited a naloxone precipiated withdrawal behaviour which was remarkably similar to that produced in mice following chronic morphine treatment. These results are consistent with the activation of endogenous opiates during swim stress in mice and present the possibility that opiate receptors are activated in a manner analogous to the repeated application of exogenous opiates, producing both tolerance and withdrawal-like behaviour.  相似文献   

13.
Rőszer T  Bánfalvi G 《Peptides》2012,34(1):177-185
Members of the FMRFamide-related peptide (FaRP) family are neurotransmitters, hormone-like substances and tumor suppressor peptides. In mammals, FaRPs are considered as anti-opiate peptides due to their ability to inhibit opioid signaling. Some FaRPs are asserted to attenuate opiate tolerance. A recently developed chimeric FaRP (Met-enkephalin-FMRFa) mimics the analgesic effects of opiates without the development of opiate-dependence, displaying a future therapeutical potential in pain reduction. In this review we support the notion, that opiates and representative members of the FaRP family show overlapping effects on apoptosis. Binding of FaRPs to opioid receptors or to their own receptors (G-protein linked membrane receptors and acid-sensing ion channels) evokes or suppresses cell death, in a cell- and receptor-type manner. With the dramatically increasing incidence of opiate abuse and addiction, understanding of opioid-induced cell death, and in this context FaRPs will deserve growing attention.  相似文献   

14.
Opiate drugs such as morphine and heroin are among the most effective analgesics known. Prolonged or repeated administration of opiates produces adaptive changes in the nervous system that lead to reduced drug potency or efficacy (tolerance), as well as physiological withdrawal symptoms and behavioral manifestations such as craving when drug use is terminated (dependence). These adaptations limit the therapeutic utility of opiate drugs, particularly in the treatment of chronically painful conditions, and are thought to contribute to the highly addictive nature of opiates. For many years it has been proposed that physiological tolerance to opiate drugs is associated with a modification of the number or functional activity of opioid receptors in specific neurons. We now understand certain mechanisms of opioid receptor desensitization and endocytosis in considerable detail. However, the functional roles that these mechanisms play in the complex physiological adaptation of the intact nervous system to opiates are only beginning to be explored.  相似文献   

15.
Opiates and opioid peptides inhibit adenylate cyclase and stimulate specific low Km GTPase activity in membranes from neuroblastoma x glioma NG108-15 hybrid cells. The effects of opiate agonists on both enzymes are mediated by high affinity stereospecific receptors and require Mg2+, GTP, and Na+. In the presence of Mg2+, Na+ inhibits basal GTPase activity; opiates stimulate GTP hydrolysis by antagonizing the Na+-induced inhibition. Activation of GTPase leads, in turn, to inactivation of GTP-stimulated adenylate cyclase activity. The intrinsic activities (or efficacies) of a series of opiates are identical for stimulation of GTPase and inhibition of adenylate cyclase. These results provide a mechanism for the dual requirement for Na+ and GTP in the inhibitory coupling of opiate receptors to the adenylate cyclase system in these cells and may be of general significance to the action of other inhibitory hormones.  相似文献   

16.
Opiate-sensitive feeding behavior has now been demonstrated in a number of species. We sought information on which opioid receptors might be involved in the observed feeding behaviors. Guinea pigs are known to have higher concentrations of the opioid kappa receptor than any other laboratory animal, so we compared the feeding suppressive potency of the general opiate antagonist, diprenorphine to that of the relatively more mu-specific antagonist, naloxone in that species. We found that diprenorphine was over twenty times more effective than naloxone in suppressing feeding in guinea pigs, suggesting the importance of receptors other than mu in feeding initiation in the guinea pig. Confirmatory evidence for the role of kappa receptors was sought, but not found, in comparisons of the effectiveness of different types of opiate agonists in promoting feeding in these animals. These agonists suppressed, rather than stimulated feeding. We conclude that no feeding stimulatory effects of opiates can be demonstrated in guinea pigs. This observation may indicate that opioids play little role in the natural regulation of feeding in this species or that opioids result in prolonged sedation during which the animals fail to eat. The greater feeding suppressive potency of diprenorphine, a general opiate antagonist, versus naloxone, a mu-preferential antagonist, indicates that to whatever extent opiates are involved in guinea pig feeding, the opiate effect is probably not a mu receptor effect.  相似文献   

17.
The mouse vas deferens has served as a useful bioassay for examining the properties of opiate receptor subtypes. However, recent data indicate that the response of the vas deferens to opiates may be mediated by one or more of the several opiate receptors found in this preparation. Although a number of techniques can be utilized to assess the relative contribution of these receptors to the response of the mouse vas deferens to opiates (e.g., selective tolerance and naloxone antagonism studies), a radiolabeled-binding technique would provide an independent means of more completely characterizing the opiate receptor profiles in this preparation. Up to the present, however, there has been only limited success in developing a binding assay utilizing crude membrane fractions of the mouse vas deferens. To circumvent these problems, we have developed a binding technique utilizing the intact vas deferens. In contrast to results obtained with membrane fractions, we found highly specific (90–95%) and saturable binding of d-[2-3H]alanine, 5-d-leucine enkephalin, a ligand selective for delta opiate receptors, to the intact vas. Scatchard analyses indicated a single class of binding sites with an apparent Kd of 1.5 nm and a Bmax of approximately 12 pmol/2 vas. The selectivity of binding was also examined. Naltrexone was 40 times less potent than unlabeled 2-d-alanine, 5-d-leucine enkephalin in displacing binding, whereas morphine and ethylketocyclazocine were 300 and 500 times less effective, respectively. This technique, coupled with the mouse vas deferens bioassay, should provide a more complete characterization of opioid receptor populations than has heretofore been possible.  相似文献   

18.
Opioid receptor agonists and Ca2+ modulation in human B cell lines.   总被引:4,自引:0,他引:4  
Opiates and opioid peptides have been shown to modulate lymphocyte functions; however, little attention has been given to the type of receptors or receptor signaling mechanisms that are involved. Receptor-mediated signaling via ionized free Ca2+ is an event thought to be important in the triggering of lymphocyte activities. We report use of the calcium indicator dye, indo-1, and flow cytometry to identify B lymphocyte calcium responses to physiologic concentrations of opioid peptides. The human B cell lines Nalm 6 and JY responded to the naturally occurring opioid pentapeptide methionine-enkephalin or other opiate receptor agonists with a rapid, dose-dependent rise in free cytoplasmic Ca2+. This opioid peptide effect on Ca2+ modulation was inhibited by the opiate receptor antagonist naloxone. The synthetic enkephalin analogue DAMGO with specificity for mu-type opiate receptors and the synthetic opiate receptor agonists U50,488H and U69,593 with selectivity for kappa-type sites also stimulated calcium responses when applied to the B cell lines. These studies provide evidence that human B cell lines express functional opiate receptors of the mu- and kappa-types and suggest that such receptors, coupled with Ca2+ modulation, are instrumental in the B cell response to opiates and endogenous opioid neuropeptides.  相似文献   

19.
Mice which had been exposed to a chronic schedule of warm water swimming showed the development of a significant tolerance to the antinociceptive response (tail-flick latency) and a significant, two-fold increase in the ED50 of morphine (tail-flick latency and abdominal constriction response). These results suggest the involvement of endogenous opiates during swim stress in mice and are consistent with the hypothesis that during chronic stress the opiate receptors are activated in a manner analogous to the repeated application of exogenous opiates producing tolerance, morphine cross tolerance and (as previously reported) withdrawal-like behaviour.  相似文献   

20.
Two types of opioid receptors were studied in the brain of rats: Delta (for endogenous opiate) and mu (for exogenous opiates). 3H derivates: D-Ala2-enkephalin and Naloxone were used as labeled ligands. The results obtained were calculated by computer program for automatic estimation of the data using approximation equations. An increase of binding delta receptors is observed in both types of stress (2-8 times), while to the mu receptors the binding is less effective mainly after irradiation. These data suggest that a close interaction exists between sympathoadrenal system and opioid mechanisms during stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号