首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main reaction of N-glycosylation of proteins is the transfer 'en bloc' of the oligosaccharide moieties of lipid intermediates to an asparagine residue of the nascent protein. For the past 15 years, a few laboratories including ours have shown that the process was accompanied by the release of oligosaccharide-phosphates and of neutral oligosaccharides possessing one GlcNAc (OS-Gn(1)) or two GlcNAc (OS-Gn(2)) at the reducing end. The aim of this review is to gather the evidence for the different origins of these soluble oligomannosides, to examine their subcellular location and intracellular trafficking. Furthermore, using Brefeldin A we demonstrated that this released oligomannoside material could be the substrate for the Golgi glycosidases and glycosyltransferases. Indeed, released oligomannoside never reach the Golgi vesicles either because they are directly produced in the cytosol as has been demonstrated for oligosaccharide-phosphates and for neutral oligosaccharides possessing one GlcNAc at the reducing end or because they are actively transported out of the rough endoplasmic reticulum to the cytosol. One of the functions of oligomannoside trafficking between rough endoplasmic reticulum, cytosol and lysosomes could be to prevent these oligosaccharides for competing with glycosylation in the Golgi.  相似文献   

2.
Recent studies demonstrated that deglycosylation step is a prerequisite for endoplasmic reticulum (ER)-associated degradation of misfolded glycoproteins. Here, we report the advantages of using benzyl mannose during pulse-chase experiments to study the subcellular location of the deglycosylation step in Chinese hamster ovary (CHO) cell lines. Benzyl mannose inhibited both the ER-to-cytosol transport of oligomannosides and the trimming of cytosolic-labeled oligomannosides by the cytosolic mannosidase in vivo. We pointed out the occurrence of two subcellular sites of deglycosylation. The first one is located in the ER lumen, and led to the formation of Man8GlcNAc2 (isomer B) in wild-type CHO cell line and Man4GlcNAc2 in Man-P-Dol-deficient cell line. The second one was revealed in CHO mutant cell lines for which a high rate of glycoprotein degradation was required. It occurred in the cytosol and led to the liberation of oligosaccharides species with one GlcNAc residue and with a pattern similar to the one bound onto glycoproteins. The cytosolic deglycosylation site was not specific for CHO mutant cell lines, since we demonstrated the occurrence of cytosolic pathway when the formation of truncated glycans was induced in wild-type cells.  相似文献   

3.
Recent studies have shown that newly synthesized proteins and glycoproteins are submitted to a quality control mechanism in the rough endoplasmic reticulum (ER). In this report we present two models: One model will illustrate a transient retention in rough ER leading to a further degradation of glycoproteins in the cytosol, (soluble alkaline phosphatase expressed in Man-P-Dol deficient CHO cells lines). The second model will illustrate a strict retention of glycoproteins in rough ER without degradation nor recycling through the Golgi (E1, E2 glycoproteins of Hepatitis C virus in stably transfected UHCV-11.4 cells and in infected Hep G2 cells).In both cases, oligomannoside structures are markers of these phenomena, either as free soluble released oligomannosides in the case of degradation, or as N-linked oligomannosides for strict retention in rough ER.  相似文献   

4.
The process of N-glycosylation of eukaryotic proteins involves a range of host enzymes that delete or add saccharide monomers. While endoplasmic reticulum (E.R.) mannosidases cleave only one mannose to produce the Man8B isomer, an alpha-1,2-mannosidase from Trichoderma reesei can sequentially cleave all four 1,2-linked mannose sugars from a Man(9)GlcNAc(2) oligosaccharide, a feature reminiscent of the activity of Golgi mannosidases. We now report the structure of the T. reesei enzyme at 2.37 A resolution. The enzyme folds as an (alpha alpha)(7) barrel. The substrate-binding site of the T. reesei mannosidase differs appreciably from the Saccharomyces cerevisiae enzyme. In the former, shorter loops at the surface allow substrate protein to come closer to the catalytic site. There is more internal space available, so that different oligosaccharide conformations are sterically allowed in the T. reesei alpha-1,2-mannosidase.  相似文献   

5.
The subcellular localization of the post-translational processing steps which occur in the conversion of pro-adrenocorticotropic hormone (ACTH)/endorphin into beta-endorphin-sized molecules in rat intermediate pituitary has been studied. Primary cell cultures were incubated in radioactively labeled amino acids, and a subcellular fraction containing secretory granules was separated from a subcellular fraction containing rough endoplasmic reticulum and Golgi apparatus by centrifugation of homogenates on gradients on Percoll (Pharmacia Fine Chemicals). The radiolabeled beta-endorphin-related material in the granule and rough endoplasmic reticulum/Golgi apparatus fractions was quantitated by immunoprecipitation and sodium dodecyl sulfate polyacrylamide gel electrophoresis. A pulse-chase labeling experiment demonstrated that newly synthesized beta-endorphin-related material first appeared in the rough endoplasmic reticulum/Golgi apparatus fraction and after longer incubations (chase) appeared in the secretory granule fraction. After 2 h of chase incubation, about 85% of the beta-endorphin-related material synthesized during the 30-min pulse incubation had been transferred from the rough endoplasmic reticulum/Golgi apparatus to the secretory granule fraction. The conversion of most of the newly synthesized pro-ACTH/endorphin into beta-lipotropin occurred in the rough endoplasmic reticulum/Golgi apparatus fraction, whereas the conversion of most of the beta-lipotropin into beta-endorphin-sized molecules occurred in the secretory granule fraction.  相似文献   

6.
Unfolded glycoproteins retained in the endoplasmic reticulum (ER) are degraded via the ER-associated degradation (ERAD) pathway. These proteins are subsequently transported to the cytosol and degraded by the proteasomal complex. Although the sequential events of ERAD are well described, its regulation remains poorly understood. The cytosolic mannosidase, Man2C1, plays an essential role in the catabolism of cytosolic free oligomannosides, which are released from the degraded proteins. We have investigated the impact of Man2C1 overexpression on protein glycosylation and the ERAD process. We demonstrated that overexpression of Man2C1 led to modifications of the cytosolic pool of free oligomannosides and resulted in accumulation of small Man(2-4)GlcNAc(1) glycans in the cytosol. We further correlated this accumulation with incomplete protein glycosylation and truncated lipid-linked glycosylation precursors, which yields an increase in N-glycoprotein en route to the ERAD. We propose a model in which high mannose levels in the cytosol interfere with glucose metabolism and compromise N-glycan synthesis in the ER. Our results show a clear link between the intracellular mannose-6-phosphate level and synthesis of the lipid-linked precursors for protein glycosylation. Disturbance in these pathways interferes with protein glycosylation and upregulated ERAD. Our findings support a new concept that regulation of Man2C1 expression is essential for maintaining efficient protein N-glycosylation.  相似文献   

7.
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum.  相似文献   

8.
Three subfamilies of mammalian Class 1 processing alpha1,2-mannosidases (family 47 glycosidases) play critical roles in the maturation of Asn-linked glycoproteins in the endoplasmic reticulum (ER) and Golgi complex as well as influencing the timing and recognition for disposal of terminally unfolded proteins by ER-associated degradation. In an effort to define the structural basis for substrate recognition among Class 1 mannosidases, we have crystallized murine Golgi mannosidase IA (space group P2(1)2(1)2(1)), and the structure was solved to 1.5-A resolution by molecular replacement. The enzyme assumes an (alphaalpha)(7) barrel structure with a Ca(2+) ion coordinated at the base of the barrel similar to other Class 1 mannosidases. Critical residues within the barrel structure that coordinate the Ca(2+) ion or presumably bind and catalyze the hydrolysis of the glycone are also highly conserved. A Man(6)GlcNAc(2) oligosaccharide attached to Asn(515) in the murine enzyme was found to extend into the active site of an adjoining protein unit in the crystal lattice in a presumed enzyme-product complex. In contrast to an analogous complex previously isolated for Saccharomyces cerevisiae ER mannosidase I, the oligosaccharide in the active site of the murine Golgi enzyme assumes a different conformation to present an alternate oligosaccharide branch into the active site pocket. A comparison of the observed protein-carbohydrate interactions for the murine Golgi enzyme with the binding cleft topologies of the other family 47 glycosidases provides a framework for understanding the structural basis for substrate recognition among this class of enzymes.  相似文献   

9.
For the past fifteen years, it has appeared increasingly evident that the N-glycosylation process was accompanied by the release of oligomannoside type oligosaccharides. This material is constituted of oligosaccharide-phosphates and of neutral oligosaccharides possessing one GlcNAc (OS-Gn1) or two GlcNAc (OS-Gn2) at the reducing end. It has been demonstrated that oligosaccharide-phosphates originated from the cleavage, by a specific pyrophosphatase, of non-glucosylated cytosolic faced oligosaccharide-PP-Dol and chiefly the Man5GlcNAc2-PP-Dol. The Man5GlcNAc2-P, as the main product, is recovered in the cytosolic compartment and is further degraded to Man5GlcNAc1 by not-yet depicted enzymes. In contrast, OS-Gn2 produced from hydrolysis of oligosaccharide-PP-Dol (presumably as a transfer reaction onto water) when the amount of protein acceptor is limiting, are generated into the lumen of rough endoplasmic reticulum (rough ER). They are further submitted to processing a-glucosidases and rough ER mannosidase and are (mainly as Man8GlcNAc2) exported into the cytosolic compartment. This material is further degraded into a single component, the Man5GlcNAc1, by the sequential action of a cytosolic neutral chitobiase followed by cytosolic mannosidase(s). Furthermore, OS-Gn1 could have a dual origin: in one hand, they originate from OS-Gn2 by the cytosolic degradation pathway indicated above, on the other hand, we will discuss a possible origin from the degradation or remodelling of newly synthesized glycoproteins. Considered first as a minor phenomenon, these observations have lead to the concept of intracellular oligomannoside trafficking, a process which results from more fundamental phenomena such as the control of the dolichol cycle, and the so-called quality-control of glycoprotein. In this review, we would like to describe the evolution of ideas on the origin, intracellular trafficking and putative roles of these oligomannosides released during during the N-glycosylation process. We propose that these early stage "glyco-deglyco" processes represent a way of control of N-glycosylation and of the fate of N-glycoproteins. This review is dedicated to Pr Paul Boulanger who has spent a large part of his career to determine the structure of proteins in order to understand their functions. If it is well established that many biological functions are born by proteins, it appears more and more evident that co- or post translational modifications are of importance in the modulation of these functions. Among them, the glycosylation appears as a major event which intervene in the 3D structure of the protein, which control his biological time-life and which may act in many recognition processes.  相似文献   

10.
Endoplasmic reticulum (ER)-resident mannosidases generate asparagine-linked oligosaccharide signals that trigger ER-associated protein degradation (ERAD) of unfolded glycoproteins. In this study, we provide in vitro evidence that a complex of the yeast protein disulfide isomerase Pdi1p and the mannosidase Htm1p processes Man(8)GlcNAc(2) carbohydrates bound to unfolded proteins, yielding Man(7)GlcNAc(2). This glycan serves as a signal for HRD ligase-mediated glycoprotein disposal. We identified a point mutation in PDI1 that prevents complex formation of the oxidoreductase with Htm1p, diminishes mannosidase activity, and delays degradation of unfolded glycoproteins in vivo. Our results show that Pdi1p is engaged in both recognition and glycan signal processing of ERAD substrates and suggest that protein folding and breakdown are not separated but interconnected processes. We propose a stochastic model for how a given glycoprotein is partitioned into folding or degradation pathways and how the flux through these pathways is adjusted to stress conditions.  相似文献   

11.
Cacan R  Verbert A 《Glycobiology》2000,10(7):645-648
The N-glycosylation process occurs in the rough endoplasmic reticulum. It requires the transport of glycosyl donors into the lumen and the exit of the glycosylated products toward the secretory pathway. Besides this main flow, the formation of free oligomannosides, glycopeptides, and misfolded glycoproteins which do not enter the secretory pathway and are cleared out of the endoplasmic reticulum by specific transports has been demonstrated. This review focuses on the export mechanisms of these three side products of the N-glycosylation process and discusses their physiological significance.  相似文献   

12.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   

13.
The endoplasmic-reticulum-associated degradation of misfolded (glyco)proteins ensures that only functional, correctly folded proteins exit from the endoplasmic reticulum and that misfolded ones are degraded by the ubiquitin-proteasome system. During the degradation of misfolded glycoproteins, they are deglycosylated by the PNGase (peptide:N-glycanase). The free oligosaccharides released by PNGase are known to be further catabolized by a cytosolic alpha-mannosidase, although the gene encoding this enzyme has not been identified unequivocally. The findings in the present study demonstrate that an alpha-mannosidase, Man2C1, is involved in the processing of free oligosaccharides that are formed in the cytosol. When the human Man2C1 orthologue was expressed in HEK-293 cells, most of the enzyme was localized in the cytosol. Its activity was enhanced by Co2+, typical of other known cytosolic alpha-mannosidases so far characterized from animal cells. The down-regulation of Man2C1 activity by a small interfering RNA drastically changed the amount and structure of oligosaccharides accumulating in the cytosol, demonstrating that Man2C1 indeed is involved in free oligosaccharide processing in the cytosol. The oligosaccharide processing in the cytosol by PNGase, endo-beta-N-acetylglucosaminidase and alpha-mannosidase may represent the common 'non-lysosomal' catabolic pathway for N-glycans in animal cells, although the molecular mechanism as well as the functional importance of such processes remains to be determined.  相似文献   

14.
《The Journal of cell biology》1984,98(5):1720-1729
1- Deoxynojirimycin is a specific inhibitor of glucosidases I and II, the first enzymes that process N-linked oligosaccharides after their transfer to polypeptides in the rough endoplasmic reticulum. In a pulse- chase experiment, 1- deoxynojirimycin greatly reduced the rate of secretion of alpha 1-antitrypsin and alpha 1-antichymotrypsin by human hepatoma HepG2 cells, but had marginal effects on secretion of the glycoproteins C3 and transferrin, or of albumin. As judged by equilibrium gradient centrifugation, 1- deoxynojirimycin caused alpha 1- antitrypsin and alpha 1-antichymotrypsin to accumulate in the rough endoplasmic reticulum. The oligosaccharides on cell-associated alpha 1- antitrypsin and alpha 1-antichymotrypsin synthesized in the presence of 1- deoxynojirimycin , remained sensitive to Endoglycosidase H and most likely had the structure Glu1- 3Man9GlcNAc2 . Tunicamycin, an antibiotic that inhibits addition of N-linked oligosaccharide units to glycoproteins, had a similar differential effect on secretion of these proteins. Swainsonine , an inhibitor of the Golgi enzyme alpha- mannosidase II, had no effect on the rates of protein secretion, although the proteins were in this case secreted with an abnormal N- linked, partially complex, oligosaccharide. We conclude that the movement of alpha 1-antitrypsin and alpha 1-antichymotrypsin from the rough endoplasmic reticulum to the Golgi requires that the N-linked oligosaccharides be processed to at least the Man9GlcNAc2 form; possibly this oligosaccharide forms part of the recognition site of a transport receptor for certain secretory proteins.  相似文献   

15.
Golgi membranes from rat liver have been shown to contain an endo-alpha-D-mannosidase which can convert Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1----3Man (Lubas, W. A., and Spiro, R. G. (1987) J. Biol. Chem. 262, 3775-3781). We now report that this enzyme has the capacity to cleave the alpha 1----2 linkage between the glucose-substituted mannose residue and the remainder of the polymannose branch in a wide range of oligosaccharides (Glc3Man9GlcNAc to Glc1Man4GlcNAc) as well as glycopeptides and oligosaccharide-lipids. Whereas the tri- and diglucosylated species (Glc3Man9GlcNAc and Glc2Man9GlcNAc), which yielded Glc3Man and Glc2Man, respectively, were processed more slowly than Glc1Man9GlcNAc, the monoglucosylated components with truncated mannose chains (Glc1Man8GlcNAc to Glc1Man4GlcNAc) were trimmed at an increased rate which was inversely related to the number of mannose residues present. The endomannosidase was not inhibited by a number of agents which are known to interfere with N-linked oligosaccharide processing by exoglycosidases, including 1-deoxynojirimycin, castanospermine, bromoconduritol, 1-deoxymannojirimycin, swainsonine, and EDTA. However, Tris and other buffers containing primary hydroxyl groups substantially decreased its activity. After Triton solubilization, the endomannosidase was observed to be bound to immobilized wheat germ agglutinin, indicating the presence of a type of carbohydrate unit consistent with Golgi localization of the enzyme. The Man8GlcNAc isomer produced by endomannosidase action was found to be processed by Golgi enzymes through a different sequence of intermediates than the rough endoplasmic reticulum-generated Man8GlcNAc variant, in which the terminal mannose of the middle branch is absent. Whereas the latter oligosaccharide is converted to Man5GlcNAc via Man7GlcNAc and Man6GlcNAc at an even rate, the processing of the endomannosidase-derived Man8GlcNAc stalls at the Man6GlcNAc stage due to the apparent resistance to Golgi mannosidase I of the alpha 1,2-linked mannose of the middle branch. The results of our study suggest that the Golgi endomannosidase takes part in a processing route for N-linked oligosaccharides which have retained glucose beyond the rough endoplasmic reticulum; the distinctive nature of this pathway may influence the ultimate structure of the resulting carbohydrate units.  相似文献   

16.
The polyprotein precursor to the envelope glycoproteins of mouse mammary tumor virus was investigated by using subcellular fractionation procedures, pactomycin mapping techniques, tunicamycin inhibition of glycosylation, and endo-beta-N-acetyl glucosaminidase H-catalyzed removal of glycosylated residues in order to characterize the biosynthesis and processing of the precursor. The results suggest that the precursor (Pr73env) is synthesized on the rough endoplasmic reticulum as a transmembrane protein, with the carboxyl terminus remaining on the cytoplasmic side. The apoprotein as an estimated molecular weight of 60,000 and acquires five core oligosaccharide units during synthesis. Cleavage of the precursor precedes the secondary glycosylation steps and therefore probably occurs before transport to the plasma membrane. However, a minor population of Pr73env containing complex oligosaccharides was also found in the plasma membrane. The order of the glycoproteins in the precursor, as determined by pactomycin mapping, in NH2-gp52-gp36-COOH.  相似文献   

17.
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.  相似文献   

18.
We have examined the relationship of N-linked oligosaccharide structures to the proper targeting and proteolytic processing of two lysosomal enzymes, alpha-mannosidase and beta-glucosidase, in the slime mold Dictyostelium discoideum. Two different mutant strains, HL241 and HL243, each synthesize the same nonglucosylated, truncated, lipid-linked oligosaccharide precursor, Man6GlcNAc2. [3H]Mannose-labeled N-linked oligosaccharides were studied following their release from immunoprecipitated alpha-mannosidase and beta-glucosidase by digestion with peptide:N-glycosidase F. The oligosaccharides from both mutants resembled each other, but they were smaller and contained fewer anionic groups than those from the wild-type. The oligosaccharides from the mutants strains were reduced in sulfate and Man-6-P content, and all Man-6-P was in the form of acid-stable phosphodiesters. Pulse-chase radiolabeling experiments using [35S] methionine indicated that the precursor forms of both enzymes were smaller than wild-type, and that this difference was due solely to differences in N-linked oligosaccharides. The precursor forms of the enzymes were not over-secreted, but appeared to be proteolytically processed into mature forms at approximately 50% the rate of wild-type. This is mainly due to their prolonged retention in the rough endoplasmic reticulum, but, ultimately, both enzymes were properly targeted to lysosomes. These studies indicate that a reduction in the amount of sulfation, phosphorylation or size of the N-linked oligosaccharides in these mutants is not critical for the proteolytic processing and targeting of the lysosomal enzymes, but that these changes may influence their rate of exit from the rough endoplasmic reticulum.  相似文献   

19.
The O-linked oligosaccharides of mucin-type glycoproteins contain N- acetyl-D-galactosamine (GalNAc) that is not found in N-linked glycoproteins. Because Helix pomatia lectin interacts with terminal GalNAc, we used this lectin, bound to particles of colloidal gold, to localize such sugar residues in subcellular compartments of intestinal goblet cells. When thin sections of low temperature Lowicryl K4M embedded duodenum or colon were incubated with Helix pomatia lectin- gold complexes, no labeling could be detected over the cisternal space of the nuclear envelope and the rough endoplasmic reticulum. A uniform labeling was observed over the first and several subsequent cis Golgi cisternae and over the last (duodenal goblet cells) or the two last (colonic goblet cells) trans Golgi cisternae as well as forming and mature mucin droplets. However, essentially no labeling was detected over several cisternae in the central (medial) region of the Golgi apparatus. The results strongly suggest that core O-glycosylation takes place in cis Golgi cisternae but not in the rough endoplasmic reticulum. The heterogenous labeling for GalNAc residues in the Golgi apparatus is taken as evidence that termination of certain O- oligosaccharide chains by GalNAc occurs in trans Golgi cisternae.  相似文献   

20.
We have studied the effects of brefeldin A (BFA) and monensin on the processing of the oligosaccharides of thyrotropin (TSH), free alpha-subunits, and cellular glycoproteins of mouse pituitary tissue to clarify the subcellular sites of action of BFA. BFA was previously shown to inhibit the translocation of glycoproteins from the rough endoplasmic reticulum to the Golgi apparatus but action at other sites was possible. Pituitaries from hypothyroid mice were incubated with [35S]methionine, [3H]mannose, [3H]galactose, [3H]fucose, N-[3H]acetylmannosamine, or [35S]sulfate for 2 hr in the absence or presence of 5 micrograms of BFA/ml or 2 microM monensin. TSH and free alpha-subunits were immunoprecipitated from tissue lysates and analyzed by sodium dodecyl sulfate-gel electrophoresis. The tryptic glycopeptides of TSH were separated using high-performance liquid chromatography. Total glycoproteins in cell lysates were precipitated using trichloroacetic acid. Labeled oligosaccharides were released from the tryptic glycopeptides of TSH and cellular glycoproteins by endoglycosidase H and they were analyzed by paper chromatography. Compared with control incubations, BFA caused the intracellular accumulation of glycoproteins having less than expected amounts of Man9GlcNAc2 units, but with excess Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2 units. There was a lesser accumulation of glucose-containing oligosaccharides, especially Glc1Man9GlcNAc2. Monensin also caused the accumulation of certain high mannose species, but the pattern differed from that seen for BFA, since Man9GlcNAc2 units were preserved and there was less excess of Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2 units. BFA did not block the initial attachment of oligosaccharides at any of the three Asn-glycosylation sites of TSH, but caused the accumulation of Man5-8GlcNAc2 units at each site. Both monensin and BFA inhibited fucosylation, sulfation, and sialylation more markedly than mannose incorporation. Thus, in addition to its previously described action of inhibiting rough endoplasmic reticulum to Golgi transport, BFA appears to partially inhibit the glucose-trimming enzymes as well as some Golgi enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号